本文整理匯總了Python中chainer.functions.relu方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.relu方法的具體用法?Python functions.relu怎麽用?Python functions.relu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.functions
的用法示例。
在下文中一共展示了functions.relu方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import relu [as 別名]
def __init__(self, in_channels, out_channels, ksize=3, pad=1, activation=F.relu, mode='none', bn=True, dr=None):
super(ResBlock, self).__init__()
initializer = chainer.initializers.GlorotUniform()
initializer_sc = chainer.initializers.GlorotUniform()
self.activation = activation
self.mode = _downsample if mode == 'down' else _upsample if mode == 'up' else None
self.learnable_sc = in_channels != out_channels
self.dr = dr
self.bn = bn
with self.init_scope():
self.c1 = L.Convolution1D(in_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer, nobias=bn)
self.c2 = L.Convolution1D(out_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer, nobias=bn)
if bn:
self.b1 = L.BatchNormalization(out_channels)
self.b2 = L.BatchNormalization(out_channels)
if self.learnable_sc:
self.c_sc = L.Convolution2D(in_channels, out_channels, ksize=1, pad=0, initialW=initializer_sc)
示例2: __init__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import relu [as 別名]
def __init__(self, n_actions, max_episode_steps):
super().__init__()
with self.init_scope():
self.embed = L.EmbedID(max_episode_steps + 1, 3136)
self.image2hidden = chainerrl.links.Sequence(
L.Convolution2D(None, 32, 8, stride=4),
F.relu,
L.Convolution2D(None, 64, 4, stride=2),
F.relu,
L.Convolution2D(None, 64, 3, stride=1),
functools.partial(F.reshape, shape=(-1, 3136)),
)
self.hidden2out = chainerrl.links.Sequence(
L.Linear(None, 512),
F.relu,
L.Linear(None, n_actions),
DiscreteActionValue,
)
示例3: make_q_func
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import relu [as 別名]
def make_q_func(self, env):
obs_size = env.observation_space.low.size
hidden_size = 64
return iqn.StatelessRecurrentImplicitQuantileQFunction(
psi=chainerrl.links.StatelessRecurrentSequential(
L.Linear(obs_size, hidden_size),
F.relu,
L.NStepRNNTanh(1, hidden_size, hidden_size, 0),
),
phi=chainerrl.links.Sequence(
chainerrl.agents.iqn.CosineBasisLinear(32, hidden_size),
F.relu,
),
f=L.Linear(hidden_size, env.action_space.n,
initialW=chainer.initializers.LeCunNormal(1e-1)),
)
示例4: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import relu [as 別名]
def __call__(self, state):
h = state
for layer in self.hidden_layers:
h = F.relu(layer(h))
v = self.v(h)
mu = self.mu(h)
if self.scale_mu:
mu = scale_by_tanh(mu, high=self.action_space.high,
low=self.action_space.low)
mat_diag = F.exp(self.mat_diag(h))
if hasattr(self, 'mat_non_diag'):
mat_non_diag = self.mat_non_diag(h)
tril = lower_triangular_matrix(mat_diag, mat_non_diag)
mat = F.matmul(tril, tril, transb=True)
else:
mat = F.expand_dims(mat_diag ** 2, axis=2)
return QuadraticActionValue(
mu, mat, v, min_action=self.action_space.low,
max_action=self.action_space.high)
示例5: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import relu [as 別名]
def __call__(self, x, t):
h = F.relu(self.conv1_1(x))
h = F.relu(self.conv1_2(h))
h = F.max_pooling_2d(h, 2, 2)
h = F.relu(self.conv2_1(h))
h = F.relu(self.conv2_2(h))
h = F.max_pooling_2d(h, 2, 2)
h = F.relu(self.conv3_1(h))
h = F.relu(self.conv3_2(h))
h = F.relu(self.conv3_3(h))
h = F.max_pooling_2d(h, 2, 2)
h = F.relu(self.conv4_1(h))
h = F.relu(self.conv4_2(h))
h = F.relu(self.conv4_3(h))
h = F.max_pooling_2d(h, 2, 2)
h = F.relu(self.conv5_1(h))
h = F.relu(self.conv5_2(h))
h = F.relu(self.conv5_3(h))
h = F.max_pooling_2d(h, 2, 2)
h = F.dropout(F.relu(self.fc6(h)), ratio=0.5, train=self.train)
h = F.dropout(F.relu(self.fc7(h)), ratio=0.5, train=self.train)
h = self.score_fr(h)
h = self.upsample(h)
return h
示例6: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import relu [as 別名]
def __call__(self, x, t):
h = F.relu(self.conv1(x))
h = F.max_pooling_2d(h, 2, 1)
h = F.relu(self.conv2(h))
h = F.relu(self.conv3(h))
h = F.relu(self.fc4(h))
h = self.fc5(h)
h = F.reshape(h, (x.data.shape[0], 3, 16, 16))
h = self.channelwise_inhibited(h)
if self.train:
self.loss = F.softmax_cross_entropy(h, t, normalize=False)
return self.loss
else:
self.pred = F.softmax(h)
return self.pred
示例7: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import relu [as 別名]
def __call__(self, x, t):
h = F.relu(self.conv1(x))
h = F.max_pooling_2d(h, 2, 1)
h = F.relu(self.conv2(h))
h = F.relu(self.conv3(h))
h = F.dropout(F.relu(self.fc4(h)), train=self.train)
h = self.fc5(h)
h = F.reshape(h, (x.data.shape[0], 3, 16, 16))
h = self.channelwise_inhibited(h)
if self.train:
self.loss = F.softmax_cross_entropy(h, t, normalize=False)
return self.loss
else:
self.pred = F.softmax(h)
return self.pred
示例8: __init__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import relu [as 別名]
def __init__(self, obs_size, n_actions, n_hidden_channels=[1024,256]):
super(QFunction,self).__init__()
net = []
inpdim = obs_size
for i,n_hid in enumerate(n_hidden_channels):
net += [ ('l{}'.format(i), L.Linear( inpdim, n_hid ) ) ]
net += [ ('norm{}'.format(i), L.BatchNormalization( n_hid ) ) ]
net += [ ('_act{}'.format(i), F.relu ) ]
inpdim = n_hid
net += [('output', L.Linear( inpdim, n_actions) )]
with self.init_scope():
for n in net:
if not n[0].startswith('_'):
setattr(self, n[0], n[1])
self.forward = net
示例9: __init__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import relu [as 別名]
def __init__(self, scale=1.0, activation_fn=F.relu):
super(Block35, self).__init__()
with self.init_scope():
self.Branch_0 = TFLoadableChain()
with self.Branch_0.init_scope():
self.Branch_0.Conv2d_1x1 = ConvBnRelu(32, 1)
self.Branch_1 = TFLoadableChain()
with self.Branch_1.init_scope():
self.Branch_1.Conv2d_0a_1x1 = ConvBnRelu(32, 1)
self.Branch_1.Conv2d_0b_3x3 = ConvBnRelu(32, 3, pad=1)
self.Branch_2 = TFLoadableChain()
with self.Branch_2.init_scope():
self.Branch_2.Conv2d_0a_1x1 = ConvBnRelu(32, 1)
self.Branch_2.Conv2d_0b_3x3 = ConvBnRelu(48, 3, pad=1)
self.Branch_2.Conv2d_0c_3x3 = ConvBnRelu(64, 3, pad=1)
# NOTE: Conv2d_1x1 is built at the first iteration
self.scale = scale
self.activation_fn = activation_fn
示例10: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import relu [as 別名]
def __call__(self, x):
h = F.relu(self.conv1_1(x))
h = F.relu(self.conv1_2(h))
h = F.max_pooling_2d(h, 2, stride=2)
h = F.relu(self.conv2_1(h))
h = F.relu(self.conv2_2(h))
h = F.max_pooling_2d(h, 2, stride=2)
h = F.relu(self.conv3_1(h))
h = F.relu(self.conv3_2(h))
h = F.max_pooling_2d(h, 2, stride=2)
h = F.relu(self.conv4_1(h))
h = F.relu(self.conv4_2(h))
h = F.spatial_pyramid_pooling_2d(h, 3, F.MaxPooling2D)
h = F.tanh(self.fc4(h))
h = F.dropout(h, ratio=.5, train=self.train)
h = F.tanh(self.fc5(h))
h = F.dropout(h, ratio=.5, train=self.train)
h = self.fc6(h)
return h
示例11: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import relu [as 別名]
def forward(self, x, t):
# def forward(self, x):
h = F.max_pooling_2d(F.local_response_normalization(
F.relu(self.conv1(x))), 3, stride=2)
h = F.max_pooling_2d(F.local_response_normalization(
F.relu(self.conv2(h))), 3, stride=2)
h = F.relu(self.conv3(h))
h = F.relu(self.conv4(h))
h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2)
h = F.dropout(F.relu(self.fc6(h)))
h = F.dropout(F.relu(self.fc7(h)))
h = self.fc8(h)
loss = F.softmax_cross_entropy(h, t)
#loss = h
# chainer.report({'loss': loss, 'accuracy': F.accuracy(h, t)}, self)
return loss
# from https://github.com/chainer/chainer/blob/master/examples/imagenet/alex.py
示例12: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import relu [as 別名]
def forward(self, x):
"""Computes the output of the Inception module.
Args:
x (~chainer.Variable): Input variable.
Returns:
Variable: Output variable. Its array has the same spatial size and
the same minibatch size as the input array. The channel dimension
has size ``out1 + out3 + out5 + proj_pool``.
"""
out1 = self.conv1(x)
out3 = self.conv3(relu.relu(self.proj3(x)))
out5 = self.conv5(relu.relu(self.proj5(x)))
pool = self.projp(F.max_pooling_2d(
x, 3, stride=1, pad=1))
y = relu.relu(concat.concat((out1, out3, out5, pool), axis=1))
return y
示例13: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import relu [as 別名]
def __call__(self, x, train):
param_num = 0
for name, f in self.forward:
if 'conv1' in name:
x = getattr(self, name)(x)
param_num += (f.W.shape[0]*f.W.shape[2]*f.W.shape[3]*f.W.shape[1]+f.W.shape[0])
elif 'bn1' in name:
x = getattr(self, name)(x, not train)
param_num += x.data.shape[1]*2
return (F.relu(x), param_num)
# [(CONV -> Batch -> ReLU -> CONV -> Batch) + (x)]
示例14: predict
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import relu [as 別名]
def predict(self, x):
h = F.max_pooling_2d(F.relu(
F.local_response_normalization(self.conv1(x))), 3, stride=2)
h = F.max_pooling_2d(F.relu(
F.local_response_normalization(self.conv2(h))), 3, stride=2)
h = F.relu(self.conv3(h))
h = F.relu(self.conv4(h))
h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2)
h = F.dropout(F.relu(self.fc6(h)), train=self.train)
h = F.dropout(F.relu(self.fc7(h)), train=self.train)
h = F.dropout(F.relu(self.fc8(h)), train=self.train)
h = self.fc9(h)
return h
示例15: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import relu [as 別名]
def __call__(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)