本文整理匯總了Python中chainer.functions.pad_sequence方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.pad_sequence方法的具體用法?Python functions.pad_sequence怎麽用?Python functions.pad_sequence使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.functions
的用法示例。
在下文中一共展示了functions.pad_sequence方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: embed_xs_with_prediction
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import pad_sequence [as 別名]
def embed_xs_with_prediction(self, xs, labels=None, batch='concat'):
predicted_exs = self.bilm.predict_embed(
xs, self.embed.W,
labels=labels,
dropout=self.config['dropout'],
mode=self.config['mode'],
temp=self.config['temp'],
word_lower_bound=self.config['word_lower_bound'],
gold_lower_bound=self.config['gold_lower_bound'],
gumbel=self.config['gumbel'],
residual=self.config['residual'],
wordwise=self.config['wordwise'],
add_original=self.config['add_original'],
augment_ratio=self.config['augment_ratio'])
if batch == 'concat':
predicted_ex_block = F.pad_sequence(predicted_exs, padding=0.)
predicted_ex_block = F.transpose(
predicted_ex_block, (0, 2, 1))[:, :, :, None]
return predicted_ex_block
elif batch == 'list':
return predicted_exs
else:
raise NotImplementedError
示例2: make_batch
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import pad_sequence [as 別名]
def make_batch(features, gpu):
"""Creates a concatenated batch from a list of data and to_gpu."""
all_input_ids = []
all_input_mask = []
all_input_type_ids = []
for feature in features:
all_input_ids.append(feature.input_ids)
all_input_mask.append(feature.input_mask)
all_input_type_ids.append(feature.input_type_ids)
def stack_and_to_gpu(data_list):
sdata = F.pad_sequence(
data_list, length=None, padding=0).array
return chainer.dataset.to_device(gpu, sdata)
batch_input_ids = stack_and_to_gpu(all_input_ids).astype('i')
batch_input_mask = stack_and_to_gpu(all_input_mask).astype('f')
batch_input_type_ids = stack_and_to_gpu(all_input_type_ids).astype('i')
return {'input_ids': batch_input_ids,
'input_mask': batch_input_mask,
'input_type_ids': batch_input_type_ids, }
示例3: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import pad_sequence [as 別名]
def __call__(self, batch, device):
"""Perform subsampling.
Args:
batch (list): Batch that will be sabsampled.
device (chainer.backend.Device): CPU or GPU device.
Returns:
chainer.Variable: xp.array that are padded and subsampled from batch.
xp.array: xp.array of the length of the mini-batches.
chainer.Variable: xp.array that are padded and subsampled from batch.
"""
# For transformer, data is processed in CPU.
# batch should be located in list
assert len(batch) == 1
xs, ys = batch[0]
xs = F.pad_sequence(xs, padding=-1).data
# get batch of lengths of input sequences
ilens = np.array([x.shape[0] for x in xs], dtype=np.int32)
return xs, ilens, ys
示例4: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import pad_sequence [as 別名]
def forward(self, xs, l):
inputs = F.pad_sequence(xs)
h = inputs[:, 0]
for time in range(l):
h = inputs[:, time]
return h
示例5: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import pad_sequence [as 別名]
def forward(self, xs, ilens):
xs, ilens = self.blstm(xs, ilens)
return F.pad_sequence(xs)
示例6: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import pad_sequence [as 別名]
def forward(self, xs, h, c, mask):
batch_size = len(xs)
lens = [x.shape[0] for x in xs]
#max_len = max(lens)
max_len = self.sequence_length
#mask = (np.expand_dims(np.arange(max_len), 0) <
# np.expand_dims(lens, 1)).astype(np.float)
#h = np.zeros((batch_size, self.num_hidden), dtype=np.float32)
#c = np.zeros((batch_size, self.num_hidden), dtype=np.float32)
#h = self.initial_h
#c = self.initial_c
inputs = F.pad_sequence(xs)
for time in range(max_len):
x = inputs[:, time]
input = F.concat((x, h), axis=1)
gate = self.l(input)
i = gate[:, 0:self.num_hidden]
o = gate[:, self.num_hidden:self.num_hidden*2]
f = gate[:, self.num_hidden*2:self.num_hidden*3]
nc = gate[:, self.num_hidden*3:self.num_hidden*4]
#i, o, f, nc = F.split_axis(gate, 4, axis=1)
i = F.sigmoid(i)
o = F.sigmoid(o)
f = F.sigmoid(f)
nc = F.tanh(nc)
nc = f * c + i * nc
nh = o * F.tanh(nc)
m = mask[:, time]
pmask = F.reshape(m, (self.batch_size,))
pmask = F.broadcast_to(F.expand_dims(pmask, axis=1),
(self.batch_size, self.num_hidden))
nmask = 1.0 - pmask
h = nh * pmask + h * nmask
return h
# from https://github.com/chainer/chainer/blob/master/examples/seq2seq/seq2seq.py
示例7: original
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import pad_sequence [as 別名]
def original(self, enc_hs, dec_z, att_prev, scaling=2.0):
'''AttDot forward
:param enc_hs:
:param dec_z:
:param scaling:
:return:
'''
batch = len(enc_hs)
# pre-compute all h outside the decoder loop
if self.pre_compute_enc_h is None:
self.enc_h = F.pad_sequence(enc_hs) # utt x frame x hdim
self.h_length = self.enc_h.shape[1]
# utt x frame x att_dim
self.pre_compute_enc_h = F.tanh(
linear_tensor(self.mlp_enc, self.enc_h))
if dec_z is None:
dec_z = chainer.Variable(self.xp.zeros(
(batch, self.dunits), dtype=np.float32))
else:
dec_z = F.reshape(dec_z, (batch, self.dunits))
# <phi (h_t), psi (s)> for all t
u = F.broadcast_to(F.expand_dims(F.tanh(self.mlp_dec(dec_z)), 1),
self.pre_compute_enc_h.shape)
e = F.sum(self.pre_compute_enc_h * u, axis=2) # utt x frame
# Applying a minus-large-number filter to make a probability value zero for a padded area
# simply degrades the performance, and I gave up this implementation
# Apply a scaling to make an attention sharp
w = F.softmax(scaling * e)
# weighted sum over flames
# utt x hdim
c = F.sum(self.enc_h * F.broadcast_to(F.expand_dims(w, 2), self.enc_h.shape), axis=1)
return c, w
示例8: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import pad_sequence [as 別名]
def forward(self, xs, ilens):
'''VGG2L forward
:param xs:
:param ilens:
:return:
'''
logging.info(self.__class__.__name__ + ' input lengths: ' + str(ilens))
# x: utt x frame x dim
xs = F.pad_sequence(xs)
# x: utt x 1 (input channel num) x frame x dim
xs = F.swapaxes(F.reshape(
xs, (xs.shape[0], xs.shape[1], self.in_channel, xs.shape[2] // self.in_channel)), 1, 2)
xs = F.relu(self.conv1_1(xs))
xs = F.relu(self.conv1_2(xs))
xs = F.max_pooling_2d(xs, 2, stride=2)
xs = F.relu(self.conv2_1(xs))
xs = F.relu(self.conv2_2(xs))
xs = F.max_pooling_2d(xs, 2, stride=2)
# change ilens accordingly
# EDIT(hamaji): ChxVM puts int32 on GPU and it hurts the performance.
# TODO(hamaji): Fix device assignment to get rid of this change.
ilens = (ilens + 1) // 2
ilens = (ilens + 1) // 2
# ilens = self.xp.array(self.xp.ceil(self.xp.array(
# ilens, dtype=np.float32) / 2), dtype=np.int32)
# ilens = self.xp.array(self.xp.ceil(self.xp.array(
# ilens, dtype=np.float32) / 2), dtype=np.int32)
# x: utt_list of frame (remove zeropaded frames) x (input channel num x dim)
xs = F.swapaxes(xs, 1, 2)
xs = F.reshape(
xs, (xs.shape[0], xs.shape[1], xs.shape[2] * xs.shape[3]))
xs = [xs[i, :ilens[i], :] for i in range(len(ilens))]
return xs, ilens
示例9: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import pad_sequence [as 別名]
def forward(self, xs):
y1 = F.pad_sequence(xs)
return y1
示例10: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import pad_sequence [as 別名]
def forward(self, xs, ilens):
'''VGG2L forward
:param xs:
:param ilens:
:return:
'''
logging.info(self.__class__.__name__ + ' input lengths: ' + str(ilens))
# x: utt x frame x dim
xs = F.pad_sequence(xs)
# x: utt x 1 (input channel num) x frame x dim
xs = F.swapaxes(F.reshape(
xs, (xs.shape[0], xs.shape[1], self.in_channel, xs.shape[2] // self.in_channel)), 1, 2)
xs = F.relu(self.conv1_1(xs))
xs = F.relu(self.conv1_2(xs))
xs = F.max_pooling_2d(xs, 2, stride=2)
xs = F.relu(self.conv2_1(xs))
xs = F.relu(self.conv2_2(xs))
xs = F.max_pooling_2d(xs, 2, stride=2)
# change ilens accordingly
# EDIT(hamaji): XCVM puts int32 on GPU and it hurts the performance.
# TODO(hamaji): Fix device assignment to get rid of this change.
ilens = (ilens + 1) // 2
ilens = (ilens + 1) // 2
# ilens = self.xp.array(self.xp.ceil(self.xp.array(
# ilens, dtype=np.float32) / 2), dtype=np.int32)
# ilens = self.xp.array(self.xp.ceil(self.xp.array(
# ilens, dtype=np.float32) / 2), dtype=np.int32)
# x: utt_list of frame (remove zeropaded frames) x (input channel num x dim)
xs = F.swapaxes(xs, 1, 2)
xs = F.reshape(
xs, (xs.shape[0], xs.shape[1], xs.shape[2] * xs.shape[3]))
xs = [xs[i, :ilens[i], :] for i in range(len(ilens))]
return xs, ilens
示例11: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import pad_sequence [as 別名]
def forward(self, xs, h):
inputs = F.pad_sequence(xs)
gate = self.l(F.concat((inputs[:, 0], h), axis=1))
return gate
示例12: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import pad_sequence [as 別名]
def forward(self, xs, activation=None):
ilens = [x.shape[0] for x in xs]
# xs: (B, T, F)
xs = F.pad_sequence(xs, padding=-1)
pad_shape = xs.shape
# emb: (B*T, E)
emb = self.enc(xs)
# ys: (B*T, C)
ys = self.linear(emb)
if activation:
ys = activation(ys)
# ys: [(T, C), ...]
ys = F.separate(ys.reshape(pad_shape[0], pad_shape[1], -1), axis=0)
ys = [F.get_item(y, slice(0, ilen)) for y, ilen in zip(ys, ilens)]
return ys
示例13: check_forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import pad_sequence [as 別名]
def check_forward(self, xs):
# Non-finite values does not work for integer values.
if not numpy.isfinite(self.pad) and \
numpy.dtype(self.dtype).kind != 'f':
return
with disable_debug_mode_if(self.can_include_nan):
y = functions.pad_sequence(
xs, length=self.length, padding=self.pad)
self.assertEqual(y.shape, self.y_shape)
for i, (length, x) in enumerate(six.moves.zip(self.lengths, self.xs)):
testing.assert_allclose(y.data[i, 0:length], x)
testing.assert_allclose(
y.data[i, length:], self.dtype(self.pad))
示例14: check_backward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import pad_sequence [as 別名]
def check_backward(self, xs, gy):
# Numerical gradient dos not work with non-finite values.
# Gradients for integer values are not defined.
if not numpy.isfinite(self.pad) or numpy.dtype(self.dtype).kind != 'f':
return
def f(*xs):
return functions.pad_sequence(
xs, length=self.length, padding=self.pad)
gradient_check.check_backward(f, xs, gy, dtype=numpy.float64)
示例15: check_double_backward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import pad_sequence [as 別名]
def check_double_backward(self, xs, gy, ggxs):
if not numpy.isfinite(self.pad) or numpy.dtype(self.dtype).kind != 'f':
return
def f(*xs):
return functions.pad_sequence(
xs, length=self.length, padding=self.pad)
gradient_check.check_double_backward(
f, xs, gy, ggxs, dtype=numpy.float64,
**self.check_double_backward_options)