當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.normalize方法代碼示例

本文整理匯總了Python中chainer.functions.normalize方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.normalize方法的具體用法?Python functions.normalize怎麽用?Python functions.normalize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.normalize方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import normalize [as 別名]
def forward(self, xs, hs=None, activation=None):
        if hs is not None:
            hx1, cx1, hx_emb, cx_emb = hs
        else:
            hx1 = cx1 = hx_emb = cx_emb = None
        # forward to LSTM layers
        hy_emb, cy_emb, ems = self.bi_lstm_emb(hx_emb, cx_emb, xs)
        hy1, cy1, ys = self.bi_lstm1(hx1, cx1, ems)
        # main branch
        ys_stack = F.vstack(ys)
        ys = self.linear1(ys_stack)
        if activation:
            ys = activation(ys)
        ilens = [x.shape[0] for x in xs]
        ys = F.split_axis(ys, np.cumsum(ilens[:-1]), axis=0)
        # embedding branch
        ems_stack = F.vstack(ems)
        ems = F.normalize(F.tanh(self.linear2(ems_stack)))
        ems = F.split_axis(ems, np.cumsum(ilens[:-1]), axis=0)

        if not isinstance(ys, tuple):
            ys = [ys]
            ems = [ems]
        return [hy1, cy1, hy_emb, cy_emb], ys, ems 
開發者ID:hitachi-speech,項目名稱:EEND,代碼行數:26,代碼來源:models.py

示例2: check_forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import normalize [as 別名]
def check_forward(self, x_data, axis):
        eps = self.eps
        x = chainer.Variable(x_data)

        y = functions.normalize(x, eps=eps, axis=axis)
        self.assertEqual(y.data.dtype, self.dtype)
        y_data = cuda.to_cpu(y.data)

        y_expect = numpy.empty_like(self.x)
        shape = self.x.shape
        indices = []
        axis_tuple = axis if isinstance(axis, tuple) else (axis,)
        for i in six.moves.range(len(shape)):
            if i not in axis_tuple:
                indices.append(six.moves.range(shape[i]))
            else:
                indices.append([slice(None)])
        indices_tuple = list(itertools.product(*indices))
        for index in indices_tuple:
            # Note: Casting back the result of `numpy.linalg.norm` to `x.dtype`
            # because old NumPy casts it to float32 when a float16 value is
            # given.
            numerator = numpy.linalg.norm(self.x[index]).astype(x.dtype) + eps
            y_expect[index] = self.x[index] / numerator
        testing.assert_allclose(y_expect, y_data, **self.check_forward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:27,代碼來源:test_l2_normalization.py

示例3: check_backward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import normalize [as 別名]
def check_backward(self, x_data, axis, y_grad):
        def f(x):
            return functions.normalize(x, eps=self.eps, axis=axis)

        gradient_check.check_backward(
            f, x_data, y_grad, **self.check_backward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:8,代碼來源:test_l2_normalization.py

示例4: check_double_backward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import normalize [as 別名]
def check_double_backward(self, x_data, axis, y_grad, x_grad_grad):
        def f(x):
            return functions.normalize(x, eps=self.eps, axis=axis)

        gradient_check.check_double_backward(
            f, x_data, y_grad, x_grad_grad,
            **self.check_double_backward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:9,代碼來源:test_l2_normalization.py

示例5: check_eps

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import normalize [as 別名]
def check_eps(self, x_data):
        x = chainer.Variable(x_data)

        y = functions.normalize(x, axis=self.axis)
        self.assertEqual(y.data.dtype, self.dtype)
        y_data = cuda.to_cpu(y.data)

        y_expect = numpy.zeros_like(self.x)
        testing.assert_allclose(y_expect, y_data) 
開發者ID:chainer,項目名稱:chainer,代碼行數:11,代碼來源:test_l2_normalization.py

示例6: output_and_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import normalize [as 別名]
def output_and_loss(self, h, t):
        logit = self(h)
        return F.softmax_cross_entropy(
            logit, t, normalize=False, reduce='mean') 
開發者ID:chainer,項目名稱:models,代碼行數:6,代碼來源:lm_nets.py

示例7: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import normalize [as 別名]
def __call__(self, x):
        if self.normalizedW is None:
            if self.norm_to_one:
                self.normalizedW = F.normalize(self.vocab_freq * self.W)
            else:
                self.normalizedW = self.norm_by_freq(self.vocab_freq)

        return embed_id.embed_id(x, self.normalizedW, ignore_label=self.ignore_label)


# Definition of a recurrent net for language modeling 
開發者ID:chainer,項目名稱:models,代碼行數:13,代碼來源:lm_nets.py

示例8: forward_seq_batch

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import normalize [as 別名]
def forward_seq_batch(self, x_seq_batch, t_seq_batch, normalize=None):
        y_seq_batch = self.encode_seq_batch(x_seq_batch)
        loss = self.output_and_loss_from_seq_batch(
            y_seq_batch, t_seq_batch, normalize)
        return loss 
開發者ID:chainer,項目名稱:models,代碼行數:7,代碼來源:lm_nets.py

示例9: output_and_loss_from_seq_batch

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import normalize [as 別名]
def output_and_loss_from_seq_batch(self, y_seq_batch, t_seq_batch, normalize=None):
        y = F.concat(y_seq_batch, axis=0)
        y = F.dropout(y, ratio=self.dropout)
        t = F.concat(t_seq_batch, axis=0)
        loss = self.output.output_and_loss(y, t)
        if normalize is not None:
            loss *= 1. * t.shape[0] / normalize
        else:
            loss *= t.shape[0]
        return loss 
開發者ID:chainer,項目名稱:models,代碼行數:12,代碼來源:lm_nets.py

示例10: look

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import normalize [as 別名]
def look(vertices, eye, direction=None, up=None):
    """
    "Look at" transformation of vertices.
    """
    assert (vertices.ndim == 3)

    xp = chainer.cuda.get_array_module(vertices)
    if direction is None:
        direction = xp.array([0, 0, 1], 'float32')
    if up is None:
        up = xp.array([0, 1, 0], 'float32')

    if isinstance(eye, list) or isinstance(eye, tuple):
        eye = xp.array(eye, 'float32')
    if eye.ndim == 1:
        eye = eye[None, :]
    if direction.ndim == 1:
        direction = direction[None, :]
    if up.ndim == 1:
        up = up[None, :]

    # create new axes
    z_axis = cf.normalize(direction)
    x_axis = cf.normalize(neural_renderer.cross(up, z_axis))
    y_axis = cf.normalize(neural_renderer.cross(z_axis, x_axis))

    # create rotation matrix: [bs, 3, 3]
    r = cf.concat((x_axis[:, None, :], y_axis[:, None, :], z_axis[:, None, :]), axis=1)
    if r.shape[0] != vertices.shape[0]:
        r = cf.broadcast_to(r, vertices.shape)

    # apply
    # [bs, nv, 3] -> [bs, nv, 3] -> [bs, nv, 3]
    if vertices.shape != eye.shape:
        eye = cf.broadcast_to(eye[:, None, :], vertices.shape)
    vertices = vertices - eye
    vertices = cf.matmul(vertices, r, transb=True)

    return vertices 
開發者ID:hiroharu-kato,項目名稱:neural_renderer,代碼行數:41,代碼來源:look.py

示例11: look_at

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import normalize [as 別名]
def look_at(vertices, eye, at=None, up=None):
    """
    "Look at" transformation of vertices.
    """
    assert (vertices.ndim == 3)

    xp = chainer.cuda.get_array_module(vertices)
    batch_size = vertices.shape[0]
    if at is None:
        at = xp.array([0, 0, 0], 'float32')
    if up is None:
        up = xp.array([0, 1, 0], 'float32')

    if isinstance(eye, list) or isinstance(eye, tuple):
        eye = xp.array(eye, 'float32')
    if eye.ndim == 1:
        eye = cf.tile(eye[None, :], (batch_size, 1))
    if at.ndim == 1:
        at = cf.tile(at[None, :], (batch_size, 1))
    if up.ndim == 1:
        up = cf.tile(up[None, :], (batch_size, 1))

    # create new axes
    z_axis = cf.normalize(at - eye)
    x_axis = cf.normalize(neural_renderer.cross(up, z_axis))
    y_axis = cf.normalize(neural_renderer.cross(z_axis, x_axis))

    # create rotation matrix: [bs, 3, 3]
    r = cf.concat((x_axis[:, None, :], y_axis[:, None, :], z_axis[:, None, :]), axis=1)
    if r.shape[0] != vertices.shape[0]:
        r = cf.broadcast_to(r, (vertices.shape[0], 3, 3))

    # apply
    # [bs, nv, 3] -> [bs, nv, 3] -> [bs, nv, 3]
    if vertices.shape != eye.shape:
        eye = cf.broadcast_to(eye[:, None, :], vertices.shape)
    vertices = vertices - eye
    vertices = cf.matmul(vertices, r, transb=True)

    return vertices 
開發者ID:hiroharu-kato,項目名稱:neural_renderer,代碼行數:42,代碼來源:look_at.py

示例12: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import normalize [as 別名]
def forward(self, x):
        """Normalize input and scale it.

        Args:
            x (chainer.Variable): A variable holding 4-dimensional array.
                Its :obj:`dtype` is :obj:`numpy.float32`.

        Returns:
            chainer.Variable:
            The shape and :obj:`dtype` are same as those of input.
        """

        x = F.normalize(x, eps=self.eps, axis=1)
        scale = F.broadcast_to(self.scale[:, np.newaxis, np.newaxis], x.shape)
        return x * scale 
開發者ID:chainer,項目名稱:chainercv,代碼行數:17,代碼來源:normalize.py

示例13: check_forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import normalize [as 別名]
def check_forward(self, x_data, proxy_data, labels_data):
        x = chainer.Variable(x_data)
        proxy = chainer.Variable(proxy_data)

        x = F.normalize(x)
        loss = proxy_nca_loss(x, proxy, labels_data)
        self.assertEqual(loss.dtype, np.float32) 
開發者ID:ronekko,項目名稱:deep_metric_learning,代碼行數:9,代碼來源:test_proxy_nca_loss.py

示例14: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import normalize [as 別名]
def __call__(self, x, subtract_mean=True):
        if subtract_mean:
            x = x - self._image_mean
#        h = super(ModifiedGoogLeNet, self).__call__(
#            x, layers=['pool5'], train=train)['pool5']
#        h = self.bn_fc(h, test=not train)
#        y = self.fc(h)
#        return y
        h = F.relu(self.conv1(x))
        h = F.max_pooling_2d(h, 3, stride=2)
        h = F.local_response_normalization(h, n=5, k=1, alpha=1e-4/5)
        h = F.relu(self.conv2_reduce(h))
        h = F.relu(self.conv2(h))
        h = F.local_response_normalization(h, n=5, k=1, alpha=1e-4/5)
        h = F.max_pooling_2d(h, 3, stride=2)
        h = self.inc3a(h)
        h = self.inc3b(h)
        h = F.max_pooling_2d(h, 3, stride=2)
        h = self.inc4a(h)
        h = self.inc4b(h)
        h = self.inc4c(h)
        h = self.inc4d(h)
        h = self.inc4e(h)
        h = F.max_pooling_2d(h, 3, stride=2)
        h = self.inc5a(h)
        h = self.inc5b(h)
        h = F.average_pooling_2d(h, 7, stride=1)
        h = self.bn_fc(h)
        y = self.fc(h)
        if self.normalize_output:
            y = F.normalize(y)
        return y 
開發者ID:ronekko,項目名稱:deep_metric_learning,代碼行數:34,代碼來源:modified_googlenet.py

示例15: proxy_nca_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import normalize [as 別名]
def proxy_nca_loss(x, proxy, labels):
    """Proxy-NCA loss function.

    Args:
        x (:class:`~chainer.Variable`):
            L2 normalized anchor points whose shape is (B, D), where B is the
            batch size and D is the number of dimensions of feature vector.
        proxy (:class:`~chainer.Variable` or :class:`~chainer.Parameter`):
            Proxies whose shape is (K, D), where K is the number of classes
            in the dataset.
        labels (:class:`numpy.ndarray`):
            Class labels associated to x. The shape is (B,) and dtype is int.
            Note that the class IDs must be 0, 1, ..., K-1.

    Returns:
        :class:`~chainer.Variable`: Loss value.

    See: `No Fuss Distance Metric Learning using Proxies \
        <http://openaccess.thecvf.com/content_ICCV_2017/papers/\
        Movshovitz-Attias_No_Fuss_Distance_ICCV_2017_paper.pdf>`_
    """
    proxy = F.normalize(proxy)
    distance = squared_distance_matrix(x, proxy)
    d_posi = distance[np.arange(len(x)), labels]

    # For each row, remove one element corresponding to the positive distance
    B, K = distance.shape  # batch size and the number of classes
    mask = np.tile(np.arange(K), (B, 1)) != labels[:, None]
    d_nega = distance[mask].reshape(B, K - 1)

    log_denominator = F.logsumexp(-d_nega, axis=1)
    loss = d_posi + log_denominator
    return F.average(loss) 
開發者ID:ronekko,項目名稱:deep_metric_learning,代碼行數:35,代碼來源:proxy_nca_loss.py


注:本文中的chainer.functions.normalize方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。