當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.minimum方法代碼示例

本文整理匯總了Python中chainer.functions.minimum方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.minimum方法的具體用法?Python functions.minimum怎麽用?Python functions.minimum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.minimum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_aabb_corners

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import minimum [as 別名]
def get_aabb_corners(grids, image_size):
    _, _, height, width = grids.shape
    grids = (grids + 1) / 2
    x_points = grids[:, 0, ...] * image_size.width
    y_points = grids[:, 1, ...] * image_size.height
    x_points = F.clip(x_points, 0., float(image_size.width))
    y_points = F.clip(y_points, 0., float(image_size.height))
    top_left_x = F.get_item(x_points, [..., 0, 0])
    top_left_y = F.get_item(y_points, [..., 0, 0])
    top_right_x = F.get_item(x_points, [..., 0, width - 1])
    top_right_y = F.get_item(y_points, [..., 0, width - 1])
    bottom_right_x = F.get_item(x_points, [..., height - 1, width - 1])
    bottom_right_y = F.get_item(y_points, [..., height - 1, width - 1])
    bottom_left_x = F.get_item(x_points, [..., height - 1, 0])
    bottom_left_y = F.get_item(y_points, [..., height - 1, 0])

    top_left_x_aabb = F.minimum(top_left_x, bottom_left_x)
    top_left_y_aabb = F.minimum(top_left_y, top_right_y)
    bottom_right_x_aabb = F.maximum(top_right_x, bottom_right_x)
    bottom_right_y_aabb = F.maximum(bottom_left_y, bottom_right_y)

    return top_left_y_aabb, top_left_x_aabb, bottom_right_y_aabb, bottom_right_x_aabb 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:24,代碼來源:match_bbox.py

示例2: calc_bboxes

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import minimum [as 別名]
def calc_bboxes(self, predicted_bboxes, image_size, out_size):
        predicted_bboxes = (predicted_bboxes + 1) / 2
        x_points = predicted_bboxes[:, 0, ...] * image_size.width
        y_points = predicted_bboxes[:, 1, ...] * image_size.height
        top_left_x = F.get_item(x_points, [..., 0, 0])
        top_left_y = F.get_item(y_points, [..., 0, 0])
        bottom_right_x = F.get_item(x_points, [..., out_size.height - 1, out_size.width - 1])
        bottom_right_y = F.get_item(y_points, [..., out_size.height - 1, out_size.width - 1])

        bboxes = F.stack(
            [
                F.minimum(top_left_x, bottom_right_x),
                F.minimum(top_left_y, bottom_right_y),
                F.maximum(top_left_x, bottom_right_x),
                F.maximum(top_left_y, bottom_right_y),
            ],
            axis=1
        )
        return bboxes 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:21,代碼來源:utils.py

示例3: calc_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import minimum [as 別名]
def calc_loss(self, grids, image_size, **kwargs):
        normalize = kwargs.get('normalize', True)
        corner_coordinates = self.get_corners(grids, image_size, scale_to_image_size=False)
        # determine whether a point is out of the image, image range is [-1, 1]
        # everything outside of this increases the loss!
        bbox = F.concat(corner_coordinates, axis=0)
        top_loss = bbox + 1.5
        bottom_loss = bbox - 1.5

        # do not penalize anything inside the image
        top_loss = F.absolute(F.minimum(top_loss, self.xp.zeros_like(top_loss.array)))
        top_loss = F.reshape(top_loss, (len(corner_coordinates), -1))
        bottom_loss = F.maximum(bottom_loss, self.xp.zeros_like(bottom_loss.array))
        bottom_loss = F.reshape(bottom_loss, (len(corner_coordinates), -1))

        loss = F.sum(F.concat([top_loss, bottom_loss], axis=0), axis=0)
        if normalize:
            loss = F.sum(loss)
        return loss 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:21,代碼來源:utils.py

示例4: reshape_to_yolo_size

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import minimum [as 別名]
def reshape_to_yolo_size(img):
    input_height, input_width, _ = img.shape
    min_pixel = 320
    #max_pixel = 608
    max_pixel = 448

    min_edge = np.minimum(input_width, input_height)
    if min_edge < min_pixel:
        input_width *= min_pixel / min_edge
        input_height *= min_pixel / min_edge
    max_edge = np.maximum(input_width, input_height)
    if max_edge > max_pixel:
        input_width *= max_pixel / max_edge
        input_height *= max_pixel / max_edge

    input_width = int(input_width / 32 + round(input_width % 32 / 32)) * 32
    input_height = int(input_height / 32 + round(input_height % 32 / 32)) * 32
    img = cv2.resize(img, (input_width, input_height))

    return img 
開發者ID:leetenki,項目名稱:YOLOv2,代碼行數:22,代碼來源:utils.py

示例5: greedy_actions

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import minimum [as 別名]
def greedy_actions(self):
        with chainer.force_backprop_mode():
            a = self.mu
            if self.min_action is not None:
                a = F.maximum(
                    self.xp.broadcast_to(self.min_action, a.array.shape), a)
            if self.max_action is not None:
                a = F.minimum(
                    self.xp.broadcast_to(self.max_action, a.array.shape), a)
            return a 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:12,代碼來源:action_value.py

示例6: _elementwise_clip

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import minimum [as 別名]
def _elementwise_clip(x, x_min, x_max):
    """Elementwise clipping

    Note: chainer.functions.clip supports clipping to constant intervals
    """
    return F.minimum(F.maximum(x, x_min), x_max) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:8,代碼來源:ppo.py

示例7: _lossfun

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import minimum [as 別名]
def _lossfun(self,
                 entropy, vs_pred, log_probs,
                 vs_pred_old, log_probs_old,
                 advs, vs_teacher):

        prob_ratio = F.exp(log_probs - log_probs_old)

        loss_policy = - F.mean(F.minimum(
            prob_ratio * advs,
            F.clip(prob_ratio, 1 - self.clip_eps, 1 + self.clip_eps) * advs))

        if self.clip_eps_vf is None:
            loss_value_func = F.mean_squared_error(vs_pred, vs_teacher)
        else:
            loss_value_func = F.mean(F.maximum(
                F.square(vs_pred - vs_teacher),
                F.square(_elementwise_clip(vs_pred,
                                           vs_pred_old - self.clip_eps_vf,
                                           vs_pred_old + self.clip_eps_vf)
                         - vs_teacher)
            ))
        loss_entropy = -F.mean(entropy)

        self.value_loss_record.append(float(loss_value_func.array))
        self.policy_loss_record.append(float(loss_policy.array))

        loss = (
            loss_policy
            + self.value_func_coef * loss_value_func
            + self.entropy_coef * loss_entropy
        )

        return loss 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:35,代碼來源:ppo.py

示例8: update_q_func

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import minimum [as 別名]
def update_q_func(self, batch):
        """Compute loss for a given Q-function."""

        batch_next_state = batch['next_state']
        batch_rewards = batch['reward']
        batch_terminal = batch['is_state_terminal']
        batch_state = batch['state']
        batch_actions = batch['action']
        batch_discount = batch['discount']

        with chainer.no_backprop_mode(), chainer.using_config('train', False):
            next_action_distrib = self.policy(batch_next_state)
            next_actions, next_log_prob =\
                next_action_distrib.sample_with_log_prob()
            next_q1 = self.target_q_func1(batch_next_state, next_actions)
            next_q2 = self.target_q_func2(batch_next_state, next_actions)
            next_q = F.minimum(next_q1, next_q2)
            entropy_term = self.temperature * next_log_prob[..., None]
            assert next_q.shape == entropy_term.shape

            target_q = batch_rewards + batch_discount * \
                (1.0 - batch_terminal) * F.flatten(next_q - entropy_term)

        predict_q1 = F.flatten(self.q_func1(batch_state, batch_actions))
        predict_q2 = F.flatten(self.q_func2(batch_state, batch_actions))

        loss1 = 0.5 * F.mean_squared_error(target_q, predict_q1)
        loss2 = 0.5 * F.mean_squared_error(target_q, predict_q2)

        # Update stats
        self.q1_record.extend(cuda.to_cpu(predict_q1.array))
        self.q2_record.extend(cuda.to_cpu(predict_q2.array))
        self.q_func1_loss_record.append(float(loss1.array))
        self.q_func2_loss_record.append(float(loss2.array))

        self.q_func1_optimizer.update(lambda: loss1)
        self.q_func2_optimizer.update(lambda: loss2) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:39,代碼來源:soft_actor_critic.py

示例9: update_policy_and_temperature

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import minimum [as 別名]
def update_policy_and_temperature(self, batch):
        """Compute loss for actor."""

        batch_state = batch['state']

        action_distrib = self.policy(batch_state)
        actions, log_prob = action_distrib.sample_with_log_prob()
        q1 = self.q_func1(batch_state, actions)
        q2 = self.q_func2(batch_state, actions)
        q = F.minimum(q1, q2)

        entropy_term = self.temperature * log_prob[..., None]
        assert q.shape == entropy_term.shape
        loss = F.mean(entropy_term - q)

        self.policy_optimizer.update(lambda: loss)

        if self.entropy_target is not None:
            self.update_temperature(log_prob.array)

        # Record entropy
        with chainer.no_backprop_mode():
            try:
                self.entropy_record.extend(
                    cuda.to_cpu(action_distrib.entropy.array))
            except NotImplementedError:
                # Record - log p(x) instead
                self.entropy_record.extend(
                    cuda.to_cpu(-log_prob.array)) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:31,代碼來源:soft_actor_critic.py

示例10: chainer_clipped_relu

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import minimum [as 別名]
def chainer_clipped_relu(x, z=20.0):
    return F.minimum(F.maximum(0.0, x), z) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:4,代碼來源:custom_functions.py

示例11: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import minimum [as 別名]
def forward(self, v1,v2):
        return F.minimum(v1, v2) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:4,代碼來源:Minimum.py

示例12: _compute_ppo_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import minimum [as 別名]
def _compute_ppo_loss(self, obs, acts, at, vt, old_params):
        params = self._pi_f(obs)
        cv = F.flatten(self._vf_f(obs))
        ratio = F.exp(self._logp(params, acts) - self._logp(old_params, acts))
        surr1 = ratio * at
        surr2 = F.clip(ratio, 1 - self._ppo_clipparam, 1 + self._ppo_clipparam) * at
        ppo_surr_loss = (
                -sym_mean(F.minimum(surr1, surr2))
                + self._ppo_klcoeff * sym_mean(self.kl(old_params, params))
                + sym_mean(F.square(cv - vt))
        )
        return ppo_surr_loss 
開發者ID:openai,項目名稱:EPG,代碼行數:14,代碼來源:agents.py

示例13: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import minimum [as 別名]
def forward(self, inputs, device):
        x1, x2 = inputs
        return functions.minimum(x1, x2), 
開發者ID:chainer,項目名稱:chainer,代碼行數:5,代碼來源:test_minimum.py

示例14: forward_expected

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import minimum [as 別名]
def forward_expected(self, inputs):
        x1, x2 = inputs
        expected = numpy.minimum(x1, x2)
        expected = numpy.asarray(expected)
        return expected.astype(self.dtype), 
開發者ID:chainer,項目名稱:chainer,代碼行數:7,代碼來源:test_minimum.py

示例15: test_minimum_inconsistent_types

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import minimum [as 別名]
def test_minimum_inconsistent_types(self):
        if self.dtype1 == self.dtype2:
            return
        x1_data = numpy.random.uniform(-1, 1, (3, 2)).astype(self.dtype1)
        x2_data = numpy.random.uniform(-1, 1, (3, 2)).astype(self.dtype2)
        x1 = chainer.Variable(x1_data)
        x2 = chainer.Variable(x2_data)
        with self.assertRaises(type_check.InvalidType):
            functions.minimum(x1, x2) 
開發者ID:chainer,項目名稱:chainer,代碼行數:11,代碼來源:test_minimum.py


注:本文中的chainer.functions.minimum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。