本文整理匯總了Python中chainer.functions.mean_squared_error方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.mean_squared_error方法的具體用法?Python functions.mean_squared_error怎麽用?Python functions.mean_squared_error使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.functions
的用法示例。
在下文中一共展示了functions.mean_squared_error方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: linear_train
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_squared_error [as 別名]
def linear_train(train_data, train_target, n_epochs=200):
for _ in range(n_epochs):
# Get the result of the forward pass.
output = linear_forward(train_data)
# Calculate the loss between the training data and target data.
loss = F.mean_squared_error(train_target, output)
# Zero all gradients before updating them.
linear_function.zerograds()
# Calculate and update all gradients.
loss.backward()
# Use the optmizer to move all parameters of the network
# to values which will reduce the loss.
optimizer.update()
示例2: _update_vf
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_squared_error [as 別名]
def _update_vf(self, dataset):
"""Update the value function using a given dataset.
The value function is updated via SGD to minimize TD(lambda) errors.
"""
xp = self.vf.xp
assert 'state' in dataset[0]
assert 'v_teacher' in dataset[0]
dataset_iter = chainer.iterators.SerialIterator(
dataset, self.vf_batch_size)
while dataset_iter.epoch < self.vf_epochs:
batch = dataset_iter.__next__()
states = batch_states([b['state'] for b in batch], xp, self.phi)
if self.obs_normalizer:
states = self.obs_normalizer(states, update=False)
vs_teacher = xp.array(
[b['v_teacher'] for b in batch], dtype=xp.float32)
vs_pred = self.vf(states)
vf_loss = F.mean_squared_error(vs_pred, vs_teacher[..., None])
self.vf_optimizer.update(lambda: vf_loss)
示例3: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_squared_error [as 別名]
def __call__(self, inputs):
pos_x, pos_y, offset_x, ego_x, ego_y, pose_x, pose_y = self._prepare_input(inputs)
batch_size, past_len, _ = pos_x.shape
h_pos = self.pos_encoder(pos_x)
h_ego = self.ego_encoder(ego_x)
h = F.concat((h_pos, h_ego), axis=1) # (B, C, 2)
h = self.inter(h)
h_pos = self.pos_decoder(h)
pred_y = self.last(h_pos) # (B, 10, C+6+28)
pred_y = F.swapaxes(pred_y, 1, 2)
pred_y = pred_y[:, :pos_y.shape[1], :]
loss = F.mean_squared_error(pred_y, pos_y)
pred_y = pred_y + F.broadcast_to(F.expand_dims(offset_x, 1), pred_y.shape)
pred_y = cuda.to_cpu(pred_y.data) * self._std + self._mean
return loss, pred_y, None
示例4: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_squared_error [as 別名]
def __call__(self, x, t=None, w=None):
# t, w is on host.
# Forward network
alpha = self.forward(x)
if t is None:
assert not chainer.config.train
return
# Weighted mean squared error
# TODO: Do more tests
# loss = F.mean(F.squared_error(alpha, t) * w)
loss = F.mean_squared_error(alpha, t)
if np.isnan(float(loss.data)):
raise ValueError('Loss is nan.')
chainer.report({'loss': loss}, self)
return loss
示例5: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_squared_error [as 別名]
def forward(self, state, action, Reward, state_dash, episode_end):
num_of_batch = state.shape[0]
s = Variable(state)
s_dash = Variable(state_dash)
Q = self.Q_func(s) # Get Q-value
# Generate Target Signals
max_Q_dash_ = self.Q_func(s_dash)
tmp = list(map(np.max, max_Q_dash_.data.get()))
max_Q_dash = np.asanyarray(tmp, dtype=np.float32)
target = np.asanyarray(Q.data.get(), dtype=np.float32)
for i in xrange(num_of_batch):
if not episode_end[i][0]:
tmp_ = np.sign(Reward[i]) + self.gamma * max_Q_dash[i]
else:
tmp_ = np.sign(Reward[i])
target[i, self.action_to_index(action[i])] = tmp_
loss = F.mean_squared_error(Variable(cuda.to_gpu(target)), Q)
return loss, Q
示例6: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_squared_error [as 別名]
def __call__(self, x, t=None):
self.clear()
#x = Variable(x_data) # x_data.astype(np.float32)
h = F.leaky_relu(self.conv1(x), slope=0.1)
h = F.leaky_relu(self.conv2(h), slope=0.1)
h = F.leaky_relu(self.conv3(h), slope=0.1)
h = F.leaky_relu(self.conv4(h), slope=0.1)
h = F.leaky_relu(self.conv5(h), slope=0.1)
h = F.leaky_relu(self.conv6(h), slope=0.1)
h = F.clipped_relu(self.conv7(h), z=1.0)
if self.train:
self.loss = F.mean_squared_error(h, t)
return self.loss
else:
return h
示例7: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_squared_error [as 別名]
def __call__(self, x, t):
y = self.predictor(x)
if self.loss == "euclidean":
return F.mean_squared_error(y, t)
elif self.loss == "sdtw":
loss = 0
for i in range(y.shape[0]):
y_i = F.reshape(y[i], (-1,1))
t_i = F.reshape(t[i], (-1,1))
loss += SoftDTWLoss(self.gamma)(y_i, t_i)
return loss
else:
raise ValueError("Unknown loss")
示例8: _lossfun
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_squared_error [as 別名]
def _lossfun(self,
entropy, vs_pred, log_probs,
vs_pred_old, log_probs_old,
advs, vs_teacher):
prob_ratio = F.exp(log_probs - log_probs_old)
loss_policy = - F.mean(F.minimum(
prob_ratio * advs,
F.clip(prob_ratio, 1 - self.clip_eps, 1 + self.clip_eps) * advs))
if self.clip_eps_vf is None:
loss_value_func = F.mean_squared_error(vs_pred, vs_teacher)
else:
loss_value_func = F.mean(F.maximum(
F.square(vs_pred - vs_teacher),
F.square(_elementwise_clip(vs_pred,
vs_pred_old - self.clip_eps_vf,
vs_pred_old + self.clip_eps_vf)
- vs_teacher)
))
loss_entropy = -F.mean(entropy)
self.value_loss_record.append(float(loss_value_func.array))
self.policy_loss_record.append(float(loss_policy.array))
loss = (
loss_policy
+ self.value_func_coef * loss_value_func
+ self.entropy_coef * loss_entropy
)
return loss
示例9: update_q_func
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_squared_error [as 別名]
def update_q_func(self, batch):
"""Compute loss for a given Q-function."""
batch_next_state = batch['next_state']
batch_rewards = batch['reward']
batch_terminal = batch['is_state_terminal']
batch_state = batch['state']
batch_actions = batch['action']
batch_discount = batch['discount']
with chainer.no_backprop_mode(), chainer.using_config('train', False):
next_action_distrib = self.policy(batch_next_state)
next_actions, next_log_prob =\
next_action_distrib.sample_with_log_prob()
next_q1 = self.target_q_func1(batch_next_state, next_actions)
next_q2 = self.target_q_func2(batch_next_state, next_actions)
next_q = F.minimum(next_q1, next_q2)
entropy_term = self.temperature * next_log_prob[..., None]
assert next_q.shape == entropy_term.shape
target_q = batch_rewards + batch_discount * \
(1.0 - batch_terminal) * F.flatten(next_q - entropy_term)
predict_q1 = F.flatten(self.q_func1(batch_state, batch_actions))
predict_q2 = F.flatten(self.q_func2(batch_state, batch_actions))
loss1 = 0.5 * F.mean_squared_error(target_q, predict_q1)
loss2 = 0.5 * F.mean_squared_error(target_q, predict_q2)
# Update stats
self.q1_record.extend(cuda.to_cpu(predict_q1.array))
self.q2_record.extend(cuda.to_cpu(predict_q2.array))
self.q_func1_loss_record.append(float(loss1.array))
self.q_func2_loss_record.append(float(loss2.array))
self.q_func1_optimizer.update(lambda: loss1)
self.q_func2_optimizer.update(lambda: loss2)
示例10: update_q_func
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_squared_error [as 別名]
def update_q_func(self, batch):
"""Compute loss for a given Q-function."""
batch_next_state = batch['next_state']
batch_rewards = batch['reward']
batch_terminal = batch['is_state_terminal']
batch_state = batch['state']
batch_actions = batch['action']
batch_discount = batch['discount']
with chainer.no_backprop_mode(), chainer.using_config('train', False):
next_actions = self.target_policy_smoothing_func(
self.target_policy(batch_next_state).sample().array)
next_q1 = self.target_q_func1(batch_next_state, next_actions)
next_q2 = self.target_q_func2(batch_next_state, next_actions)
next_q = F.minimum(next_q1, next_q2)
target_q = batch_rewards + batch_discount * \
(1.0 - batch_terminal) * F.flatten(next_q)
predict_q1 = F.flatten(self.q_func1(batch_state, batch_actions))
predict_q2 = F.flatten(self.q_func2(batch_state, batch_actions))
loss1 = F.mean_squared_error(target_q, predict_q1)
loss2 = F.mean_squared_error(target_q, predict_q2)
# Update stats
self.q1_record.extend(cuda.to_cpu(predict_q1.array))
self.q2_record.extend(cuda.to_cpu(predict_q2.array))
self.q_func1_loss_record.append(float(loss1.array))
self.q_func2_loss_record.append(float(loss2.array))
self.q_func1_optimizer.update(lambda: loss1)
self.q_func2_optimizer.update(lambda: loss2)
示例11: compute_value_loss
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_squared_error [as 別名]
def compute_value_loss(y, t, clip_delta=True, batch_accumulator='mean'):
"""Compute a loss for value prediction problem.
Args:
y (Variable or ndarray): Predicted values.
t (Variable or ndarray): Target values.
clip_delta (bool): Use the Huber loss function if set True.
batch_accumulator (str): 'mean' or 'sum'. 'mean' will use the mean of
the loss values in a batch. 'sum' will use the sum.
Returns:
(Variable) scalar loss
"""
assert batch_accumulator in ('mean', 'sum')
y = F.reshape(y, (-1, 1))
t = F.reshape(t, (-1, 1))
if clip_delta:
loss_sum = F.sum(F.huber_loss(y, t, delta=1.0))
if batch_accumulator == 'mean':
loss = loss_sum / y.shape[0]
elif batch_accumulator == 'sum':
loss = loss_sum
else:
loss_mean = F.mean_squared_error(y, t) / 2
if batch_accumulator == 'mean':
loss = loss_mean
elif batch_accumulator == 'sum':
loss = loss_mean * y.shape[0]
return loss
示例12: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_squared_error [as 別名]
def __call__(self, x):
y = self.extract_feature(x)
e = F.mean_squared_error(self.y0, y)
tv = self.tv_norm(x)
self.loss = (self.lambda_euc * float(self.y0.data.size) * e +
self.args.lambda_tv * tv +
self.args.lambda_lp * F.sum(x ** self.args.p))
return self.loss
示例13: z_generate
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_squared_error [as 別名]
def z_generate(z, G, copy_paste_var, nz, gpu):
z = np.reshape(z, (nz, 1, 1)).astype(np.float32)
z_var = Variable(chainer.dataset.concat_examples([z], gpu))
loss = F.mean_squared_error(copy_paste_var, G(z_var))
# Backward
loss.backward()
# Transfer loss & diff from GPU to CPU
loss = cuda.to_cpu(loss.data)
dz = np.squeeze(cuda.to_cpu(z_var.grad))
return loss, np.asarray(dz.flatten(), dtype=np.float64)
示例14: g_loss
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_squared_error [as 別名]
def g_loss(self, errG, fake, gtv):
l2_loss = F.mean_squared_error(fake, gtv)
loss = (1 - self.args.l2_weight) * errG + self.args.l2_weight * l2_loss
chainer.report({'loss': loss}, self.G)
chainer.report({'l2_loss': l2_loss}, self.G)
chainer.report({'gan_loss': errG}, self.G)
return loss
示例15: update
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_squared_error [as 別名]
def update(Q, target_Q, policy, target_policy, opt_Q, opt_policy,
samples, gamma=0.99):
"""Update a Q-function and a policy."""
dtype = chainer.get_dtype()
xp = Q.xp
obs = xp.asarray([sample[0] for sample in samples], dtype=dtype)
action = xp.asarray([sample[1] for sample in samples], dtype=dtype)
reward = xp.asarray([sample[2] for sample in samples], dtype=dtype)
done = xp.asarray([sample[3] for sample in samples], dtype=dtype)
obs_next = xp.asarray([sample[4] for sample in samples], dtype=dtype)
def update_Q():
# Predicted values: Q(s,a)
y = F.squeeze(Q(obs, action), axis=1)
# Target values: r + gamma * Q(s,policy(s))
with chainer.no_backprop_mode():
next_q = F.squeeze(target_Q(obs_next, target_policy(obs_next)),
axis=1)
target = reward + gamma * (1 - done) * next_q
loss = F.mean_squared_error(y, target)
Q.cleargrads()
loss.backward()
opt_Q.update()
def update_policy():
# Maximize Q(s,policy(s))
q = Q(obs, policy(obs))
q = q[:] # Avoid https://github.com/chainer/chainer/issues/2744
loss = - F.mean(q)
policy.cleargrads()
loss.backward()
opt_policy.update()
update_Q()
update_policy()