當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.mean_absolute_error方法代碼示例

本文整理匯總了Python中chainer.functions.mean_absolute_error方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.mean_absolute_error方法的具體用法?Python functions.mean_absolute_error怎麽用?Python functions.mean_absolute_error使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.mean_absolute_error方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: calc_loss_style

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_absolute_error [as 別名]
def calc_loss_style(hout_dict,hcomp_dict,hgt_dict):
    layers = hgt_dict.keys()
    for i,layer_name in enumerate(layers):
        B,C,H,W = hout_dict[layer_name].shape
        hout = F.reshape(hout_dict[layer_name],(B,C,H*W))
        hcomp = F.reshape(hcomp_dict[layer_name],(B,C,H*W))
        hgt = F.reshape(hgt_dict[layer_name],(B,C,H*W))
        
        hout_gram = F.batch_matmul(hout,hout,transb=True)
        hcomp_gram = F.batch_matmul(hcomp,hcomp,transb=True)
        hgt_gram = F.batch_matmul(hgt,hgt,transb=True)
        
        if i==0: 
            L_style_out = F.mean_absolute_error(hout_gram,hgt_gram)/(C*H*W)
            L_style_comp = F.mean_absolute_error(hcomp_gram,hgt_gram)/(C*H*W)
        else:
            L_style_out += F.mean_absolute_error(hout_gram,hgt_gram)/(C*H*W)
            L_style_comp += F.mean_absolute_error(hcomp_gram,hgt_gram)/(C*H*W)        

    return L_style_out + L_style_comp 
開發者ID:SeitaroShinagawa,項目名稱:chainer-partial_convolution_image_inpainting,代碼行數:22,代碼來源:updater.py

示例2: gene_update_half

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_absolute_error [as 別名]
def gene_update_half(self, a):
        if a:
            itr_x = self.itr_a
            itr_y = self.itr_b
            gene_xy = self.generator_ab
            gene_yx = self.generator_ba
            disc = self.discriminator_b
            opt = self.opt_g_a
        else:
            itr_x = self.itr_b
            itr_y = self.itr_a
            gene_xy = self.generator_ba
            gene_yx = self.generator_ab
            disc = self.discriminator_a
            opt = self.opt_g_b

        x = Variable(self.converter(itr_x.next(), self.device))
        y = Variable(self.converter(itr_y.next(), self.device))

        xy  = gene_xy(x)
        xyx = gene_yx(xy)
        yy  = gene_xy(y)

        xy_disc = disc(xy)

        recon_loss = F.mean_absolute_error(x, xyx)
        gan_loss   = self.loss_hinge_gene(xy_disc)
        ident_loss = F.mean_absolute_error(y, yy)

        loss_gene = recon_loss*3.0 + gan_loss + ident_loss*0.5

        gene_xy.cleargrads()
        loss_gene.backward()
        opt.update()

        chainer.reporter.report({
            'loss/g/recon': recon_loss,
            'loss/g/ident': ident_loss,
            'loss/g/gene':  gan_loss}) 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:41,代碼來源:updater.py

示例3: gene_update_full

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_absolute_error [as 別名]
def gene_update_full(self):
        a = Variable(self.converter(self.itr_a.next(), self.device))
        b = Variable(self.converter(self.itr_b.next(), self.device))

        ab  = self.generator_ab(a)
        ba  = self.generator_ba(b)
        aba = self.generator_ba(ab)
        bab = self.generator_ab(ba)
        aa  = self.generator_ba(a)
        bb  = self.generator_ab(b)

        ab_disc = self.discriminator_b(ab)
        ba_disc = self.discriminator_a(ba)

        recon_loss = F.mean_absolute_error(a, aba) + F.mean_absolute_error(b, bab)
        gan_loss   = self.loss_hinge_gene(ab_disc) + self.loss_hinge_gene(ba_disc)
        ident_loss = F.mean_absolute_error(a, aa)  + F.mean_absolute_error(b, bb)

        loss_gene = recon_loss*3.0 + gan_loss + ident_loss*0.5

        self.generator_ab.cleargrads()
        self.generator_ba.cleargrads()
        loss_gene.backward()
        self.opt_g_a.update()
        self.opt_g_b.update()

        chainer.reporter.report({
            'loss/g/recon': recon_loss,
            'loss/g/ident': ident_loss,
            'loss/g/gene':  gan_loss}) 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:32,代碼來源:updater.py

示例4: calc_loss_perceptual

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_absolute_error [as 別名]
def calc_loss_perceptual(hout_dict,hcomp_dict,hgt_dict):
    layers = list(hout_dict.keys())
    layer_name =  layers[0]
    loss = F.mean_absolute_error(hout_dict[layer_name],hgt_dict[layer_name])
    loss += F.mean_absolute_error(hcomp_dict[layer_name],hgt_dict[layer_name])
    for layer_name in layers[1:]: 
        loss += F.mean_absolute_error(hout_dict[layer_name],hgt_dict[layer_name])
        loss += F.mean_absolute_error(hcomp_dict[layer_name],hgt_dict[layer_name])
    return loss 
開發者ID:SeitaroShinagawa,項目名稱:chainer-partial_convolution_image_inpainting,代碼行數:11,代碼來源:updater.py

示例5: calc_loss_tv

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_absolute_error [as 別名]
def calc_loss_tv(Icomp, mask, xp=np):
    canvas = mask.data
    canvas[:,:,:,:-1] += mask.data[:,:,:,1:] #mask left overlap
    canvas[:,:,:,1:] += mask.data[:,:,:,:-1] #mask right overlap
    canvas[:,:,:-1,:] += mask.data[:,:,1:,:] #mask up overlap
    canvas[:,:,1:,:] += mask.data[:,:,:-1,:] #mask bottom overlap
    
    P = Variable((xp.sign(canvas-0.5)+1.0)*0.5) #P region (hole mask: 1 pixel dilated region from hole)
    return F.mean_absolute_error(P[:,:,:,1:]*Icomp[:,:,:,1:],P[:,:,:,:-1]*Icomp[:,:,:,:-1])+ F.mean_absolute_error(P[:,:,1:,:]*Icomp[:,:,1:,:],P[:,:,:-1,:]*Icomp[:,:,:-1,:]) 
開發者ID:SeitaroShinagawa,項目名稱:chainer-partial_convolution_image_inpainting,代碼行數:11,代碼來源:updater.py

示例6: loss_enc

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_absolute_error [as 別名]
def loss_enc(self, enc, x_out, t_out, y_out, lam1=100, lam2=1):
        batchsize, _, w, h = y_out.shape
        loss_rec = lam1*(F.mean_absolute_error(x_out, t_out))
        loss_adv = lam2*F.sum(F.softplus(-y_out)) / batchsize / w / h
        loss = loss_rec + loss_adv
        chainer.report({'loss': loss}, enc)
        return loss 
開發者ID:chainer,項目名稱:chainer,代碼行數:9,代碼來源:updater.py

示例7: loss_dec

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_absolute_error [as 別名]
def loss_dec(self, dec, x_out, t_out, y_out, lam1=100, lam2=1):
        batchsize, _, w, h = y_out.shape
        loss_rec = lam1*(F.mean_absolute_error(x_out, t_out))
        loss_adv = lam2*F.sum(F.softplus(-y_out)) / batchsize / w / h
        loss = loss_rec + loss_adv
        chainer.report({'loss': loss}, dec)
        return loss 
開發者ID:chainer,項目名稱:chainer,代碼行數:9,代碼來源:updater.py

示例8: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_absolute_error [as 別名]
def forward(self, inputs, device):
        x0, x1 = inputs
        loss = functions.mean_absolute_error(x0, x1)
        return loss, 
開發者ID:chainer,項目名稱:chainer,代碼行數:6,代碼來源:test_mean_absolute_error.py

示例9: test_invalid_dtype1

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_absolute_error [as 別名]
def test_invalid_dtype1(self):
        x0 = chainer.Variable(
            numpy.random.uniform(-1, 1, (4, 3)).astype(numpy.int32))
        x1 = chainer.Variable(
            numpy.random.uniform(-1, 1, (4, 3)).astype(numpy.int32))
        with self.assertRaises(type_check.InvalidType):
            functions.mean_absolute_error(x0, x1) 
開發者ID:chainer,項目名稱:chainer,代碼行數:9,代碼來源:test_mean_absolute_error.py

示例10: test_invalid_dtype2

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_absolute_error [as 別名]
def test_invalid_dtype2(self):
        x0 = chainer.Variable(
            numpy.random.uniform(-1, 1, (4, 3)).astype(numpy.float32))
        x1 = chainer.Variable(
            numpy.random.uniform(-1, 1, (4, 3)).astype(numpy.float16))
        with self.assertRaises(type_check.InvalidType):
            functions.mean_absolute_error(x0, x1)


# See chainer#6702. 
開發者ID:chainer,項目名稱:chainer,代碼行數:12,代碼來源:test_mean_absolute_error.py

示例11: loss_enc

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_absolute_error [as 別名]
def loss_enc(self, enc, x_out, t_out, y_out, lam1=100, lam2=1):
        batchsize, _, w, h = y_out.data.shape
        loss_rec = lam1*(F.mean_absolute_error(x_out, t_out))
        loss_adv = lam2*F.sum(F.softplus(-y_out)) / batchsize / w / h
        loss = loss_rec + loss_adv
        chainer.report({'loss': loss}, enc)
        return loss 
開發者ID:pfnet,項目名稱:pfio,代碼行數:9,代碼來源:updater.py

示例12: loss_dec

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_absolute_error [as 別名]
def loss_dec(self, dec, x_out, t_out, y_out, lam1=100, lam2=1):
        batchsize, _, w, h = y_out.data.shape
        loss_rec = lam1*(F.mean_absolute_error(x_out, t_out))
        loss_adv = lam2*F.sum(F.softplus(-y_out)) / batchsize / w / h
        loss = loss_rec + loss_adv
        chainer.report({'loss': loss}, dec)
        return loss 
開發者ID:pfnet,項目名稱:pfio,代碼行數:9,代碼來源:updater.py

示例13: loss_func_rec_l1

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_absolute_error [as 別名]
def loss_func_rec_l1(x_out, t):
    return F.mean_absolute_error(x_out, t) 
開發者ID:Aixile,項目名稱:chainer-cyclegan,代碼行數:4,代碼來源:updater.py

示例14: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_absolute_error [as 別名]
def __call__(self, x):
        h = x
        h = F.leaky_relu(self.c0(h))
        h = F.leaky_relu(self.c1(h))
        h = F.leaky_relu(self.c2(h))
        h = F.leaky_relu(self.c3(h))
        h = F.leaky_relu(self.l4(h))
        h = F.reshape(F.leaky_relu(self.l5(h)), (x.data.shape[0], self.ch, 4, 4))
        h = F.leaky_relu(self.dc3(h))
        h = F.leaky_relu(self.dc2(h))
        h = F.leaky_relu(self.dc1(h))
        h = F.tanh(self.dc0(h))
        return F.mean_absolute_error(h, x) 
開發者ID:pfnet-research,項目名稱:chainer-gan-lib,代碼行數:15,代碼來源:net.py

示例15: _loss_predictor

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import mean_absolute_error [as 別名]
def _loss_predictor(self, predictor, output, target, d_fake):
        b, _, t = d_fake.data.shape

        loss_mse = (F.mean_absolute_error(output, target))
        chainer.report({'mse': loss_mse}, predictor)

        loss_adv = F.sum(F.softplus(-d_fake)) / (b * t)
        chainer.report({'adversarial': loss_adv}, predictor)

        loss = self.loss_config.mse * loss_mse + self.loss_config.adversarial * loss_adv
        chainer.report({'loss': loss}, predictor)
        return loss 
開發者ID:Hiroshiba,項目名稱:become-yukarin,代碼行數:14,代碼來源:updater.py


注:本文中的chainer.functions.mean_absolute_error方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。