當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.maximum方法代碼示例

本文整理匯總了Python中chainer.functions.maximum方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.maximum方法的具體用法?Python functions.maximum怎麽用?Python functions.maximum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.maximum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import maximum [as 別名]
def __call__(self, *xs):
        operation = self.operation

        if operation == 0:      # PROD
            return six.moves.reduce(lambda x, y: x * y, xs),

        elif operation == 1:    # SUM
            coeffs = self.coeffs
            if coeffs is not None:
                assert len(xs) == len(coeffs)
                xs = [x * coeff for x, coeff in zip(xs, coeffs)]
            return six.moves.reduce(lambda x, y: x + y, xs),

        elif operation == 2:    # MAX
            return six.moves.reduce(lambda x, y: functions.maximum(x, y), xs),

        else:
            raise ValueError('Invalid EltwiseParameter.EltwiseOp value.') 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:caffe_function.py

示例2: calc_intersection

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import maximum [as 別名]
def calc_intersection(self, top_left_x_1, width_1, top_left_x_2, width_2, top_left_y_1, height_1, top_left_y_2, height_2):
        width_overlap = self.calc_overlap(
            top_left_x_1,
            width_1,
            top_left_x_2,
            width_2
        )

        height_overlap = self.calc_overlap(
            top_left_y_1,
            height_1,
            top_left_y_2,
            height_2
        )

        width_overlap = F.maximum(width_overlap, self.xp.zeros_like(width_overlap))
        height_overlap = F.maximum(height_overlap, self.xp.zeros_like(height_overlap))

        return width_overlap * height_overlap 
開發者ID:Bartzi,項目名稱:see,代碼行數:21,代碼來源:loss_metrics.py

示例3: get_aabb_corners

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import maximum [as 別名]
def get_aabb_corners(grids, image_size):
    _, _, height, width = grids.shape
    grids = (grids + 1) / 2
    x_points = grids[:, 0, ...] * image_size.width
    y_points = grids[:, 1, ...] * image_size.height
    x_points = F.clip(x_points, 0., float(image_size.width))
    y_points = F.clip(y_points, 0., float(image_size.height))
    top_left_x = F.get_item(x_points, [..., 0, 0])
    top_left_y = F.get_item(y_points, [..., 0, 0])
    top_right_x = F.get_item(x_points, [..., 0, width - 1])
    top_right_y = F.get_item(y_points, [..., 0, width - 1])
    bottom_right_x = F.get_item(x_points, [..., height - 1, width - 1])
    bottom_right_y = F.get_item(y_points, [..., height - 1, width - 1])
    bottom_left_x = F.get_item(x_points, [..., height - 1, 0])
    bottom_left_y = F.get_item(y_points, [..., height - 1, 0])

    top_left_x_aabb = F.minimum(top_left_x, bottom_left_x)
    top_left_y_aabb = F.minimum(top_left_y, top_right_y)
    bottom_right_x_aabb = F.maximum(top_right_x, bottom_right_x)
    bottom_right_y_aabb = F.maximum(bottom_left_y, bottom_right_y)

    return top_left_y_aabb, top_left_x_aabb, bottom_right_y_aabb, bottom_right_x_aabb 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:24,代碼來源:match_bbox.py

示例4: calc_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import maximum [as 別名]
def calc_loss(self, grids, image_size, **kwargs):
        normalize = kwargs.get('normalize', True)
        top_left_x, top_right_x, _, _, top_left_y, _, bottom_left_y, _ = self.get_corners(grids, image_size)

        # penalize upside down images
        distance = top_left_y - bottom_left_y
        up_down_loss = F.maximum(distance, self.xp.zeros_like(distance.array))
        if normalize:
            up_down_loss = F.sum(up_down_loss)

        # penalize images that are vertically mirrored
        distance = top_left_x - top_right_x
        left_right_loss = F.maximum(distance, self.xp.zeros_like(distance.array))
        if normalize:
            left_right_loss = F.sum(left_right_loss)

        return up_down_loss + left_right_loss 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:19,代碼來源:utils.py

示例5: random_hsv_image

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import maximum [as 別名]
def random_hsv_image(bgr_image, delta_hue, delta_sat_scale, delta_val_scale):
    hsv_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2HSV).astype(np.float32)

    # hue
    hsv_image[:, :, 0] += int((np.random.rand() * delta_hue * 2 - delta_hue) * 255)

    # sat
    sat_scale = 1 + np.random.rand() * delta_sat_scale * 2 - delta_sat_scale
    hsv_image[:, :, 1] *= sat_scale

    # val
    val_scale = 1 + np.random.rand() * delta_val_scale * 2 - delta_val_scale
    hsv_image[:, :, 2] *= val_scale

    hsv_image[hsv_image < 0] = 0 
    hsv_image[hsv_image > 255] = 255 
    hsv_image = hsv_image.astype(np.uint8)
    bgr_image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)
    return bgr_image

# non maximum suppression 
開發者ID:leetenki,項目名稱:YOLOv2,代碼行數:23,代碼來源:utils.py

示例6: reshape_to_yolo_size

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import maximum [as 別名]
def reshape_to_yolo_size(img):
    input_height, input_width, _ = img.shape
    min_pixel = 320
    #max_pixel = 608
    max_pixel = 448

    min_edge = np.minimum(input_width, input_height)
    if min_edge < min_pixel:
        input_width *= min_pixel / min_edge
        input_height *= min_pixel / min_edge
    max_edge = np.maximum(input_width, input_height)
    if max_edge > max_pixel:
        input_width *= max_pixel / max_edge
        input_height *= max_pixel / max_edge

    input_width = int(input_width / 32 + round(input_width % 32 / 32)) * 32
    input_height = int(input_height / 32 + round(input_height % 32 / 32)) * 32
    img = cv2.resize(img, (input_width, input_height))

    return img 
開發者ID:leetenki,項目名稱:YOLOv2,代碼行數:22,代碼來源:utils.py

示例7: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import maximum [as 別名]
def __call__(self, *xs):
		operation = self.operation

		if operation == 0:      # PROD
			return six.moves.reduce(lambda x, y: x * y, xs),

		elif operation == 1:    # SUM
			coeffs = self.coeffs
			if coeffs is not None:
				assert len(xs) == len(coeffs)
				xs = [x * coeff for x, coeff in zip(xs, coeffs)]
			return six.moves.reduce(lambda x, y: x + y, xs),

		elif operation == 2:    # MAX
			return six.moves.reduce(lambda x, y: functions.maximum(x, y), xs),

		else:
			raise ValueError('Invalid EltwiseParameter.EltwiseOp value.') 
開發者ID:uei,項目名稱:deel,代碼行數:20,代碼來源:caffefunction.py

示例8: clip_actions

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import maximum [as 別名]
def clip_actions(actions, min_action, max_action):
    min_actions = F.broadcast_to(min_action, actions.shape)
    max_actions = F.broadcast_to(max_action, actions.shape)
    return F.maximum(F.minimum(actions, max_actions), min_actions) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:6,代碼來源:distribution.py

示例9: greedy_actions

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import maximum [as 別名]
def greedy_actions(self):
        with chainer.force_backprop_mode():
            a = self.mu
            if self.min_action is not None:
                a = F.maximum(
                    self.xp.broadcast_to(self.min_action, a.array.shape), a)
            if self.max_action is not None:
                a = F.minimum(
                    self.xp.broadcast_to(self.max_action, a.array.shape), a)
            return a 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:12,代碼來源:action_value.py

示例10: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import maximum [as 別名]
def forward(self, v1,v2):
        return F.maximum(v1, v2) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:4,代碼來源:Maximum.py

示例11: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import maximum [as 別名]
def forward(self, inputs, devices):
        x1, x2 = inputs
        return functions.maximum(x1, x2), 
開發者ID:chainer,項目名稱:chainer,代碼行數:5,代碼來源:test_maximum.py

示例12: forward_expected

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import maximum [as 別名]
def forward_expected(self, inputs):
        x1, x2 = inputs
        expected = numpy.maximum(x1, x2)
        expected = numpy.asarray(expected)
        return expected, 
開發者ID:chainer,項目名稱:chainer,代碼行數:7,代碼來源:test_maximum.py

示例13: test_maximum_inconsistent_shapes

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import maximum [as 別名]
def test_maximum_inconsistent_shapes(self):
        x1_data = numpy.random.uniform(-1, 1, (3, 2)).astype(self.dtype)
        x2_data = numpy.random.uniform(-1, 1, (2, 3)).astype(self.dtype)
        x1 = chainer.Variable(x1_data)
        x2 = chainer.Variable(x2_data)
        with self.assertRaises(type_check.InvalidType):
            functions.maximum(x1, x2) 
開發者ID:chainer,項目名稱:chainer,代碼行數:9,代碼來源:test_maximum.py

示例14: calc_direction_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import maximum [as 別名]
def calc_direction_loss(self, grids):
        top_left_x, top_right_x, _, top_left_y, _, bottom_left_y = self.get_corners(grids)

        # penalize upside down images
        distance = top_left_y - bottom_left_y
        loss_values = F.maximum(distance, self.xp.zeros_like(distance))
        up_down_loss = F.average(loss_values)

        # penalize images that are vertically mirrored
        distance = top_left_x - top_right_x
        loss_values = F.maximum(distance, self.xp.zeros_like(distance))
        left_right_loss = F.average(loss_values)

        return up_down_loss + left_right_loss 
開發者ID:Bartzi,項目名稱:see,代碼行數:16,代碼來源:loss_metrics.py

示例15: calc_overlap

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import maximum [as 別名]
def calc_overlap(self, left_1, width_1, left_2, width_2):
        radius_1 = width_1 / 2
        center_1 = left_1 + radius_1
        radius_2 = width_2 / 2
        center_2 = left_2 + radius_2

        center_distance = center_2 - center_1
        center_distance = F.maximum(center_distance, center_distance * -1)
        min_distance_for_no_overlap = radius_1 + radius_2
        return min_distance_for_no_overlap - center_distance 
開發者ID:Bartzi,項目名稱:see,代碼行數:12,代碼來源:loss_metrics.py


注:本文中的chainer.functions.maximum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。