當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.max方法代碼示例

本文整理匯總了Python中chainer.functions.max方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.max方法的具體用法?Python functions.max怎麽用?Python functions.max使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.max方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: round_channels

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import max [as 別名]
def round_channels(channels,
                   divisor=8):
    """
    Round weighted channel number (make divisible operation).

    Parameters:
    ----------
    channels : int or float
        Original number of channels.
    divisor : int, default 8
        Alignment value.

    Returns
    -------
    int
        Weighted number of channels.
    """
    rounded_channels = max(int(channels + divisor / 2.0) // divisor * divisor, divisor)
    if float(rounded_channels) < 0.9 * channels:
        rounded_channels += divisor
    return rounded_channels 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:23,代碼來源:common.py

示例2: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import max [as 別名]
def __call__(self, x):
        heatmap = x
        vector_dim = 2
        batch = heatmap.shape[0]
        channels = heatmap.shape[1]
        in_size = x.shape[2:]
        heatmap_vector = F.reshape(heatmap, shape=(batch, channels, -1))
        indices = F.cast(F.expand_dims(F.argmax(heatmap_vector, axis=vector_dim), axis=vector_dim), np.float32)
        scores = F.max(heatmap_vector, axis=vector_dim, keepdims=True)
        scores_mask = (scores.array > 0.0).astype(np.float32)
        pts_x = (indices.array % in_size[1]) * scores_mask
        pts_y = (indices.array // in_size[1]) * scores_mask
        pts = F.concat((pts_x, pts_y, scores), axis=vector_dim).array
        for b in range(batch):
            for k in range(channels):
                hm = heatmap[b, k, :, :].array
                px = int(pts_x[b, k])
                py = int(pts_y[b, k])
                if (0 < px < in_size[1] - 1) and (0 < py < in_size[0] - 1):
                    pts[b, k, 0] += np.sign(hm[py, px + 1] - hm[py, px - 1]) * 0.25
                    pts[b, k, 1] += np.sign(hm[py + 1, px] - hm[py - 1, px]) * 0.25
        return pts 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:24,代碼來源:common.py

示例3: update

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import max [as 別名]
def update(Q, target_Q, opt, samples, gamma=0.99, target_type='double_dqn'):
    """Update a Q-function with given samples and a target Q-function."""
    dtype = chainer.get_dtype()
    xp = Q.xp
    obs = xp.asarray([sample[0] for sample in samples], dtype=dtype)
    action = xp.asarray([sample[1] for sample in samples], dtype=np.int32)
    reward = xp.asarray([sample[2] for sample in samples], dtype=dtype)
    done = xp.asarray([sample[3] for sample in samples], dtype=dtype)
    obs_next = xp.asarray([sample[4] for sample in samples], dtype=dtype)
    # Predicted values: Q(s,a)
    y = F.select_item(Q(obs), action)
    # Target values: r + gamma * max_b Q(s',b)
    with chainer.no_backprop_mode():
        if target_type == 'dqn':
            next_q = F.max(target_Q(obs_next), axis=1)
        elif target_type == 'double_dqn':
            next_q = F.select_item(target_Q(obs_next),
                                   F.argmax(Q(obs_next), axis=1))
        else:
            raise ValueError('Unsupported target_type: {}'.format(target_type))
        target = reward + gamma * (1 - done) * next_q
    loss = mean_clipped_loss(y, target)
    Q.cleargrads()
    loss.backward()
    opt.update() 
開發者ID:chainer,項目名稱:chainer,代碼行數:27,代碼來源:dqn_cartpole.py

示例4: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import max [as 別名]
def __call__(self, x, *args):
        """
           Args:
               x (ndarray): Shape is (Batch * K, 7, t).
                            each set has (xi, yi, zi, ri, xi −vx, yi −vy, zi −vz).
                            vx, vy, vz is local mean at each voxel.
           Return:
               y (ndarray): Shape is (Batch * K, 128)
        """
        n_batch, n_channels, n_points = x.shape
        # mask = F.max(x, axis=(1, 2), keepdims=True).data != 0
        mask = F.max(x, axis=1, keepdims=True).data != 0
        active_length = 0 #mask.sum()

        # Convolution1D -> BN -> relu -> pool -> concat
        h = F.relu(self.bn1(self.conv1(x), active_length, mask))
        global_feat = F.max_pooling_nd(h, n_points)
        # Shape is (Batch, channel, points)
        global_feat_expand = F.tile(global_feat, (1, 1, n_points))
        h = F.concat((h, global_feat_expand))
        h *= mask

        h = self.conv2(h)
        return F.squeeze(F.max_pooling_nd(h, n_points)) 
開發者ID:yukitsuji,項目名稱:voxelnet_chainer,代碼行數:26,代碼來源:light_voxelnet.py

示例5: determine_best_prediction_indices

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import max [as 別名]
def determine_best_prediction_indices(self, raw_classification_result):
        distribution = F.softmax(raw_classification_result, axis=3)
        predicted_classes = F.argmax(distribution, axis=3)

        scores = []
        for i, image in enumerate(predicted_classes):
            means = []
            for j, image_variant in enumerate(image):
                num_predictions = len([prediction for prediction in image_variant if prediction.array != self.blank_label_class])
                probs = F.max(distribution[i, j, :num_predictions], axis=1).array
                if len(probs) == 0:
                    means.append(self.xp.array(0, dtype=probs.dtype))
                means.append(self.xp.mean(probs))
            means = self.xp.stack(means, axis=0)
            scores.append(means)
        scores = self.xp.stack(scores, axis=0)
        # scores = F.sum(F.max(F.softmax(raw_classification_result, axis=3), axis=3), axis=2)
        best_indices = F.argmax(scores, axis=1).array
        best_indices = best_indices[:, self.xp.newaxis]
        return best_indices, scores 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:22,代碼來源:text_recognition_evaluator.py

示例6: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import max [as 別名]
def __call__(self, coord_points, feature_points=None):
        # coord_points   (batch_size, num_point, coord_dim)
        # feature_points (batch_size, num_point, ch)
        # num_point, ch: coord_dim

        # grouped_points (batch_size, k, num_sample, channel)
        # center_points  (batch_size, k, coord_dim)
        grouped_points, center_points = self.sampling_grouping(
            coord_points, feature_points=feature_points)
        # set alias `h` -> (bs, channel, num_sample, k)
        # Note: transpose may be removed by optimizing shape sequence for sampling_groupoing
        h = functions.transpose(grouped_points, (0, 3, 2, 1))
        # h (bs, ch, num_sample_in_region, k=num_group)
        for conv_block in self.feature_extractor_list:
            h = conv_block(h)
        # TODO: try other option of pooling function
        h = functions.max(h, axis=2, keepdims=True)
        # h (bs, ch, 1, k=num_group)
        for conv_block in self.head_list:
            h = conv_block(h)
        h = functions.transpose(h[:, :, 0, :], (0, 2, 1))
        return center_points, h  # (bs, k, coord), h (bs, k, ch') 
開發者ID:corochann,項目名稱:chainer-pointnet,代碼行數:24,代碼來源:set_abstraction_all_block.py

示例7: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import max [as 別名]
def __call__(self, coord_points, feature_points=None):
        # coord_points   (batch_size, num_point, coord_dim)
        # feature_points (batch_size, num_point, ch)
        # num_point, ch: coord_dim

        # grouped_points (batch_size, k, num_sample, channel)
        # center_points  (batch_size, k, coord_dim)
        grouped_points, center_points, dist = self.sampling_grouping(
            coord_points, feature_points=feature_points)
        # set alias `h` -> (bs, channel, num_sample, k)
        # Note: transpose may be removed by optimizing shape sequence for sampling_groupoing
        h = functions.transpose(grouped_points, (0, 3, 2, 1))
        # h (bs, ch, num_sample_in_region, k=num_group)
        for conv_block in self.feature_extractor_list:
            h = conv_block(h)
        # TODO: try other option of pooling function
        h = functions.max(h, axis=2, keepdims=True)
        # h (bs, ch, 1, k=num_group)
        for conv_block in self.head_list:
            h = conv_block(h)
        h = functions.transpose(h[:, :, 0, :], (0, 2, 1))
        # points (bs, k, coord), h (bs, k, ch'), dist (bs, k, num_point)
        return center_points, h, dist 
開發者ID:corochann,項目名稱:chainer-pointnet,代碼行數:25,代碼來源:set_abstraction_block.py

示例8: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import max [as 別名]
def __call__(self, h, axis=1, **kwargs):
        if self.activation is not None:
            h = self.activation(h)
        else:
            h = h

        if self.mode == 'sum':
            y = functions.sum(h, axis=axis)
        elif self.mode == 'max':
            y = functions.max(h, axis=axis)
        elif self.mode == 'summax':
            h_sum = functions.sum(h, axis=axis)
            h_max = functions.max(h, axis=axis)
            y = functions.concat((h_sum, h_max), axis=axis)
        else:
            raise ValueError('mode {} is not supported'.format(self.mode))
        return y 
開發者ID:chainer,項目名稱:chainer-chemistry,代碼行數:19,代碼來源:general_readout.py

示例9: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import max [as 別名]
def __call__(self, x, t, train=True, finetune=False):

        h = self.l1(x, train, finetune)
        # h = F.dropout(h, self.dr, train)
        h = self.l2(h, train, finetune)

        h = plane_group_spatial_max_pooling(h, ksize=2, stride=2, pad=0, cover_all=True, use_cudnn=True)

        h = self.l3(h, train, finetune)
        # h = F.dropout(h, self.dr, train)
        h = self.l4(h, train, finetune)
        # h = F.dropout(h, self.dr, train)
        h = self.l5(h, train, finetune)
        # h = F.dropout(h, self.dr, train)
        h = self.l6(h, train, finetune)

        h = self.top(h)

        h = F.max(h, axis=-3, keepdims=False)
        h = F.max(h, axis=-1, keepdims=False)
        h = F.max(h, axis=-1, keepdims=False)

        return F.softmax_cross_entropy(h, t), F.accuracy(h, t) 
開發者ID:tscohen,項目名稱:gconv_experiments,代碼行數:25,代碼來源:P4CNN.py

示例10: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import max [as 別名]
def __call__(self, x, t, train=True, finetune=False):

        h = self.l1(x, train, finetune)
        h = F.dropout(h, self.dr, train)
        h = self.l2(h, train, finetune)

        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0, cover_all=True, use_cudnn=True)

        h = self.l3(h, train, finetune)
        h = F.dropout(h, self.dr, train)
        h = self.l4(h, train, finetune)
        h = F.dropout(h, self.dr, train)
        h = self.l5(h, train, finetune)
        h = F.dropout(h, self.dr, train)
        h = self.l6(h, train, finetune)
        h = F.dropout(h, self.dr, train)

        h = self.top(h)

        h = F.max(h, axis=-1, keepdims=False)
        h = F.max(h, axis=-1, keepdims=False)

        return F.softmax_cross_entropy(h, t), F.accuracy(h, t) 
開發者ID:tscohen,項目名稱:gconv_experiments,代碼行數:25,代碼來源:Z2CNN.py

示例11: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import max [as 別名]
def __call__(self, xs):
        x_block = chainer.dataset.convert.concat_examples(xs, padding=-1)
        ex_block = block_embed(self.embed, x_block, self.dropout)
        h_w3 = F.max(self.cnn_w3(ex_block), axis=2)
        h_w4 = F.max(self.cnn_w4(ex_block), axis=2)
        h_w5 = F.max(self.cnn_w5(ex_block), axis=2)
        h = F.concat([h_w3, h_w4, h_w5], axis=1)
        h = F.relu(h)
        h = F.dropout(h, ratio=self.dropout)
        h = self.mlp(h)
        return h 
開發者ID:Pinafore,項目名稱:qb,代碼行數:13,代碼來源:nets.py

示例12: main

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import max [as 別名]
def main():
    np.random.seed(314)
    a1 = np.random.rand(6, 2, 3).astype(np.float32)
 
    def test(func, name):
        testtools.generate_testcase(Simple(func), [a1], subname= name + '_simple')
        testtools.generate_testcase(Axis(func), [a1], subname= name + '_axis')
        testtools.generate_testcase(KeepDims(func), [a1], subname= name + '_keepdims')
        testtools.generate_testcase(AxisKeepDims(func), [a1], subname= name + '_axiskeepdims')

    test(F.min, 'min')
    test(F.max, 'max') 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:14,代碼來源:MinMax.py

示例13: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import max [as 別名]
def __call__(self, xs, labels=None):
        x_block = chainer.dataset.convert.concat_examples(xs, padding=-1)
        ex_block = block_embed(self.embed, x_block, self.dropout)
        if self.use_predict_embed and chainer.config.train:
            ex_block = self.embed.embed_xs_with_prediction(
                xs, labels=labels, batch='concat')
        h_w3 = F.max(self.cnn_w3(ex_block), axis=2)
        h_w4 = F.max(self.cnn_w4(ex_block), axis=2)
        h_w5 = F.max(self.cnn_w5(ex_block), axis=2)
        h = F.concat([h_w3, h_w4, h_w5], axis=1)
        h = F.relu(h)
        h = F.dropout(h, ratio=self.dropout)
        h = self.mlp(h)
        return h 
開發者ID:pfnet-research,項目名稱:contextual_augmentation,代碼行數:16,代碼來源:nets.py

示例14: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import max [as 別名]
def __call__(self, x, y):
        x = self.up(x)
        x = self.bn(x)
        w_conf = F.softmax(x)
        w_max = F.broadcast_to(F.expand_dims(F.max(w_conf, axis=1), axis=1), x.shape)
        x = y * (1 - w_max) + x
        return x 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:9,代碼來源:sinet.py

示例15: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import max [as 別名]
def __call__(self, tokenIdsList_merged, tokenIdsList_merged_b, argsort, argsort_reverse,
                 pList):  # input a list of token ids, output a list of word embeddings
        tokenIdsList_merged += 2
        input_emb = self.embed(tokenIdsList_merged)
        # input = input.reshape(input.shape[0], input.shape[1], input.shape[2])
        input_emb = F.transpose(input_emb, (0, 2, 1))
        input_emb = F.dropout(input_emb, self.dropout)
        # print(input.shape)
        if 'small' in self.subword:
            h = self.cnn1(input_emb)
            h = F.max(h, (2,))
        else:
            h1 = self.cnn1(input_emb)
            h1 = F.max(h1, (2,))
            h2 = self.cnn2(input_emb)
            h2 = F.max(h2, (2,))
            h3 = self.cnn3(input_emb)
            h3 = F.max(h3, (2,))
            h4 = self.cnn4(input_emb)
            h4 = F.max(h4, (2,))
            h5 = self.cnn5(input_emb)
            h5 = F.max(h5, (2,))
            h6 = self.cnn6(input_emb)
            h6 = F.max(h6, (2,))
            h7 = self.cnn7(input_emb)
            h7 = F.max(h7, (2,))
            h = F.concat((h1, h2, h3, h4, h5, h6, h7))

        h = F.dropout(h, self.dropout)
        h = F.tanh(h)
        y = self.out(h)
        # print(y.shape)
        e = y
        e = F.reshape(e, (int(e.shape[0] / self.n_ngram),
                          self.n_ngram, e.shape[1]))
        e = F.sum(e, axis=1)
        return e 
開發者ID:vecto-ai,項目名稱:vecto,代碼行數:39,代碼來源:subword.py


注:本文中的chainer.functions.max方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。