當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.matmul方法代碼示例

本文整理匯總了Python中chainer.functions.matmul方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.matmul方法的具體用法?Python functions.matmul怎麽用?Python functions.matmul使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.matmul方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import matmul [as 別名]
def __call__(self, state):
        h = state
        for layer in self.hidden_layers:
            h = F.relu(layer(h))
        v = self.v(h)
        mu = self.mu(h)

        if self.scale_mu:
            mu = scale_by_tanh(mu, high=self.action_space.high,
                               low=self.action_space.low)

        mat_diag = F.exp(self.mat_diag(h))
        if hasattr(self, 'mat_non_diag'):
            mat_non_diag = self.mat_non_diag(h)
            tril = lower_triangular_matrix(mat_diag, mat_non_diag)
            mat = F.matmul(tril, tril, transb=True)
        else:
            mat = F.expand_dims(mat_diag ** 2, axis=2)
        return QuadraticActionValue(
            mu, mat, v, min_action=self.action_space.low,
            max_action=self.action_space.high) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:23,代碼來源:state_q_functions.py

示例2: compute_weighted_value_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import matmul [as 別名]
def compute_weighted_value_loss(eltwise_loss, weights,
                                batch_accumulator='mean'):
    """Compute a loss for value prediction problem.

    Args:
        eltwise_loss (Variable): Element-wise loss per example
        weights (ndarray): Weights for y, t.
        batch_accumulator (str): 'mean' will divide loss by batchsize
    Returns:
        (Variable) scalar loss
    """
    batch_size = eltwise_loss.shape[0]
    assert batch_accumulator in ('mean', 'sum')
    assert eltwise_loss.ndim == 3
    # eltwise_loss is (batchsize, n , n') array of losses
    # weights is an array of shape (batch_size)
    # apply weights per example in batch
    loss_sum = F.matmul(F.sum(F.mean(eltwise_loss, axis=2), axis=1), weights)
    if batch_accumulator == 'mean':
        loss = loss_sum / batch_size
    elif batch_accumulator == 'sum':
        loss = loss_sum
    return loss 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:25,代碼來源:iqn.py

示例3: compute_weighted_value_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import matmul [as 別名]
def compute_weighted_value_loss(eltwise_loss, batch_size, weights,
                                batch_accumulator='mean'):
    """Compute a loss for value prediction problem.

    Args:
        eltwise_loss (Variable): Element-wise loss per example per atom
        weights (ndarray): Weights for y, t.
        batch_accumulator (str): 'mean' will divide loss by batchsize
    Returns:
        (Variable) scalar loss
    """
    assert batch_accumulator in ('mean', 'sum')

    # eltwise_loss is (batchsize, n_atoms) array of losses
    # weights is an array of shape (batch_size)
    # sum loss across atoms and then apply weight per example in batch
    loss_sum = F.matmul(F.sum(eltwise_loss, axis=1), weights)
    if batch_accumulator == 'mean':
        loss = loss_sum / batch_size
    elif batch_accumulator == 'sum':
        loss = loss_sum
    return loss 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:24,代碼來源:categorical_dqn.py

示例4: dc_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import matmul [as 別名]
def dc_loss(embedding, label):
    """
    Deep clustering loss function.

    Args:
      embedding: (T,D)-shaped activation values
      label: (T,C)-shaped labels
    return:
      (1,)-shaped squared flobenius norm of the difference
      between embedding and label affinity matrices
    """
    xp = cuda.get_array_module(label)
    b = xp.zeros((label.shape[0], 2**label.shape[1]))
    b[np.arange(label.shape[0]),
      [int(''.join(str(x) for x in t), base=2) for t in label.data]] = 1

    label_f = chainer.Variable(b.astype(np.float32))
    loss = F.sum(F.square(F.matmul(embedding, embedding, True, False))) \
        + F.sum(F.square(F.matmul(label_f, label_f, True, False))) \
        - 2 * F.sum(F.square(F.matmul(embedding, label_f, True, False)))
    return loss 
開發者ID:hitachi-speech,項目名稱:EEND,代碼行數:23,代碼來源:models.py

示例5: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import matmul [as 別名]
def __call__(self, doc_ids, update_only_docs=False):
        """ Given an array of document integer indices, returns a vector
        for each document. The vector is composed of topic weights projected
        onto topic vectors.

        Args:
            doc_ids : chainer.Variable
                One-dimensional batch vectors of IDs

        Returns:
            doc_vector : chainer.Variable
                Batch of two-dimensional embeddings for every document.
        """
        # (batchsize, ) --> (batchsize, multinomial)
        proportions = self.proportions(doc_ids, softmax=True)
        # (batchsize, n_factors) * (n_factors, n_dim) --> (batchsize, n_dim)
        factors = F.dropout(self.factors(), ratio=self.dropout_ratio)
        if update_only_docs:
            factors.unchain_backward()
        w_sum = F.matmul(proportions, factors)
        return w_sum 
開發者ID:cemoody,項目名稱:lda2vec,代碼行數:23,代碼來源:embed_mixture.py

示例6: propup

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import matmul [as 別名]
def propup(self, vis):
        """
        This function propagates the visible units activation upwards to the hidden units
        Eq.(7)
        :param vis: Variable Matrix(batch_size, in_channels, image_height, image_width)
                    - given v_sample
        :return: Variable Matrix(batch_size, out_channels, image_height_out, image_width_out)
                 - probability for each hidden units to be h_i=1
        """
        # conv.W: Matrix(out_channels, in_channels, filter height=ksize, filter width=ksize)
        # conv.b: Vec   (out_channels, )
        if self.real == 0:
            pre_sigmoid_activation = self.conv(vis)
        else:
            pre_sigmoid_activation = self.conv(vis / self.std_ch)
        # F.matmul(vis, self.conv.W, transb=True) + F.broadcast_to(self.conv.b, (vis.data.shape[0], self.n_hidden))
        return F.sigmoid(pre_sigmoid_activation) 
開發者ID:corochann,項目名稱:SeRanet,代碼行數:19,代碼來源:convolution_rbm.py

示例7: propdown

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import matmul [as 別名]
def propdown(self, hid):
        """ This function propagates the hidden units activation downwords to the visible units
        :param hid: Variable Matrix(batch_size, out_channels, image_height_out, image_width_out)  - given h_sample
        :return: Variable Matrix(batch_size, in_channels, image_height, image_width) - probability for each visible units to be v_j = 1
        """
        batch_size = hid.data.shape[0]
        if self.real == 0:
            W_flipped = F.swapaxes(CF.flip(self.conv.W, axes=(2, 3)), axis1=0, axis2=1)
            pre_sigmoid_activation = F.convolution_2d(hid, W_flipped, self.conv.a, pad=self.ksize-1)
                # F.matmul(hid, self.l.W) + F.broadcast_to(self.l.a, (batch_size, self.n_visible))
            v_mean = F.sigmoid(pre_sigmoid_activation)
            #print('W info ', self.conv.W.data.shape, 'W_flipped info ', W_flipped.data.shape)
            #print('W info ', self.conv.W.data[3, 0, 2, 3], 'W_flipped info ', W_flipped.data[0, 3, 8, 7])
            #print('W info ', self.conv.W.data[3, 0, 8, 7], 'W_flipped info ', W_flipped.data[0, 3, 2, 3])
            #print('W info ', self.conv.W.data[19, 0, 4, 0], 'W_flipped info ', W_flipped.data[0, 19, 6, 10])
            #print('pre_sigmoidactivation', F.sum(pre_sigmoid_activation).data)
            #print('v_mean', v_mean.data.shape)
            #print('v_mean sum', F.sum(v_mean).data)
            #print('hid', hid.data.shape)

        else:
            # TODO: check
            W_flipped = F.swapaxes(CF.flip(self.conv.W, axes=(2, 3)), axis1=0, axis2=1)
            v_mean = F.convolution_2d(hid, W_flipped, self.conv.a, pad=self.ksize-1)
        return v_mean 
開發者ID:corochann,項目名稱:SeRanet,代碼行數:27,代碼來源:convolution_rbm.py

示例8: reconstruct

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import matmul [as 別名]
def reconstruct(self, v):
        """

        :param v: Variable Matrix(batch_size, in_channels, image_height, image_width)
        :return: reconstructed_v, Variable Matrix(batch_size, in_channels, image_height, image_width)
        """
        batch_size = v.data.shape[0]
        xp = cuda.get_array_module(v.data)
        if self.real == 0:
            h = F.sigmoid(self.conv(v))
        else:
            std_ch = xp.reshape(self.std, (1, self.in_channels, 1, 1))
            h = F.sigmoid(self.conv(v / std_ch))
        # F.sigmoid(F.matmul(v, self.l.W, transb=True) + F.broadcast_to(self.l.b, (batch_size, self.n_hidden)))
        W_flipped = F.swapaxes(CF.flip(self.conv.W, axes=(2, 3)), axis1=0, axis2=1)
        reconstructed_v = F.sigmoid(F.convolution_2d(h, W_flipped, self.conv.a, pad=self.ksize-1))
            # = F.sigmoid(F.matmul(h, self.l.W) + F.broadcast_to(self.l.a, (batch_size, self.n_visible)))
        return reconstructed_v 
開發者ID:corochann,項目名稱:SeRanet,代碼行數:20,代碼來源:convolution_rbm.py

示例9: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import matmul [as 別名]
def __call__(self, h):
        # type: (chainer.Variable) -> chainer.Variable
        xp = cuda.get_array_module(h)
        mb, node, ch = h.shape  # type: int, int, int
        if self.q_star is None:
            self.q_star = [
                xp.zeros((1, self.in_channels * 2)).astype('f')
                for _ in range(mb)
            ]
        self.hx, self.cx, q = self.lstm_layer(self.hx, self.cx, self.q_star)
        # self.hx: (mb, mb, ch)
        # self.cx: (mb, mb, ch)
        # q: List[(1, ch) * mb]
        q = functions.stack(q)  # q: (mb, 1, ch)
        q_ = functions.transpose(q, axes=(0, 2, 1))  # q_: (mb, ch, 1)
        e = functions.matmul(h, q_)  # e: (mb, node, 1)
        a = functions.softmax(e)  # a: (mb, node, 1)
        a = functions.broadcast_to(a, h.shape)  # a: (mb, node, ch)
        r = functions.sum((a * h), axis=1, keepdims=True)  # r: (mb, 1, ch)
        q_star_ = functions.concat((q, r), axis=2)  # q_star_: (mb, 1, ch*2)
        self.q_star = functions.separate(q_star_)
        return functions.reshape(q_star_, (mb, ch * 2)) 
開發者ID:chainer,項目名稱:chainer-chemistry,代碼行數:24,代碼來源:set2set.py

示例10: evaluate_actions

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import matmul [as 別名]
def evaluate_actions(self, actions):
        u_minus_mu = actions - self.mu
        a = - 0.5 * \
            F.matmul(F.matmul(
                u_minus_mu[:, None, :], self.mat),
                u_minus_mu[:, :, None])[:, 0, 0]
        return a + F.reshape(self.v, (self.batch_size,)) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:9,代碼來源:action_value.py

示例11: batch_matmul

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import matmul [as 別名]
def batch_matmul(a, b, transa=False, transb=False):
    return F.matmul(a[:, :, None], b, transa=transa, transb=transb) 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:4,代碼來源:attention.py

示例12: compute_ctxt_demux

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import matmul [as 別名]
def compute_ctxt_demux(self, fb_concat, mask):
        mb_size, nb_elems, Hi = fb_concat.data.shape
        assert Hi == self.Hi
        assert mb_size == 1
        assert len(mask) == 0

        precomputed_al_factor = F.reshape(self.al_lin_h(
            F.reshape(fb_concat, (mb_size * nb_elems, self.Hi))), (mb_size, nb_elems, self.Ha))

#         concatenated_mask = F.concat([F.reshape(mask_elem, (mb_size, 1)) for mask_elem in mask], 1)

        def compute_ctxt(previous_state, prev_word_embedding=None):
            current_mb_size = previous_state.data.shape[0]

            al_factor = F.broadcast_to(precomputed_al_factor, (current_mb_size, nb_elems, self.Ha))
#             used_fb_concat = F.broadcast_to(fb_concat, (current_mb_size, nb_elems, Hi))
#             used_concatenated_mask = F.broadcast_to(concatenated_mask, (current_mb_size, nb_elems))

            state_al_factor = self.al_lin_s(previous_state)
            
            #As suggested by Isao Goto
            if prev_word_embedding is not None:
                state_al_factor = state_al_factor + self.al_lin_y(prev_word_embedding)
            
            state_al_factor_bc = F.broadcast_to(F.reshape(state_al_factor, (current_mb_size, 1, self.Ha)), (current_mb_size, nb_elems, self.Ha))
            a_coeffs = F.reshape(self.al_lin_o(F.reshape(F.tanh(state_al_factor_bc + al_factor),
                                                         (current_mb_size * nb_elems, self.Ha))), (current_mb_size, nb_elems))


#             with cuda.get_device_from_array(used_concatenated_mask.data):
#                 a_coeffs = a_coeffs - 10000 * (1-used_concatenated_mask.data)

            attn = F.softmax(a_coeffs)

#             ci = F.reshape(F.batch_matmul(attn, used_fb_concat, transa = True), (current_mb_size, self.Hi))

            ci = F.reshape(F.matmul(attn, F.reshape(fb_concat, (nb_elems, Hi))), (current_mb_size, self.Hi))

            return ci, attn

        return compute_ctxt 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:43,代碼來源:attention.py

示例13: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import matmul [as 別名]
def __call__(self, prev_states, inpt, is_soft_inpt=False):
        if is_soft_inpt:
            prev_y = F.matmul(inpt, self.decoder_chain.emb.W)
        else:
            prev_y = self.decoder_chain.emb(inpt)

        new_states, logits, attn = self.advance_one_step(prev_states, prev_y)

        return new_states, logits, attn 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:11,代碼來源:decoder_cells.py

示例14: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import matmul [as 別名]
def forward(self, enc_hs, dec_z, att_prev):
        c, w = self.l(enc_hs, dec_z, att_prev)
        return F.matmul(c, w) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:5,代碼來源:EspNet_AttDot.py

示例15: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import matmul [as 別名]
def forward(self, x, y):
        return F.matmul(x, y)


# ====================================== 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:7,代碼來源:Matmul.py


注:本文中的chainer.functions.matmul方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。