本文整理匯總了Python中chainer.functions.log_softmax方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.log_softmax方法的具體用法?Python functions.log_softmax怎麽用?Python functions.log_softmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.functions
的用法示例。
在下文中一共展示了functions.log_softmax方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: softmax_cross_entropy
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import log_softmax [as 別名]
def softmax_cross_entropy(self, y, t):
import numpy as np
log_softmax = F.log_softmax(y)
# SelectItem is not supported by onnx-chainer.
# TODO(hamaji): Support it?
# log_prob = F.select_item(log_softmax, t)
# TODO(hamaji): Currently, F.sum with axis=1 cannot be
# backpropped properly.
# log_prob = F.sum(log_softmax * t, axis=1)
# self.batch_size = chainer.Variable(np.array(t.size, np.float32),
# name='batch_size')
# return -F.sum(log_prob, axis=0) / self.batch_size
log_prob = F.sum(log_softmax * t, axis=(0, 1))
batch_size = chainer.Variable(np.array(t.shape[0], np.float32),
name='batch_size')
self.extra_inputs = [batch_size]
loss = -log_prob / batch_size
loss.name = 'loss'
return loss
示例2: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import log_softmax [as 別名]
def forward(self, x, t):
xp = cuda.get_array_module(x)
y = self.predictor(x)
log_softmax = F.log_softmax(y)
# SelectItem is not supported by onnx-chainer.
# TODO(hamaji): Support it?
# log_prob = F.select_item(log_softmax, t)
batch_size = chainer.Variable(xp.array(t.size, xp.float32),
name='batch_size')
self.extra_inputs = [batch_size]
# TODO(hamaji): Currently, F.sum with axis=1 cannot be
# backpropped properly.
# log_prob = F.sum(log_softmax * t, axis=1)
# return -F.sum(log_prob, axis=0) / self.batch_size
log_prob = F.sum(log_softmax * t, axis=(0, 1))
loss = -log_prob / batch_size
reporter.report({'loss': loss}, self)
if self.compute_accuracy:
acc = accuracy.accuracy(y, xp.argmax(t, axis=1))
reporter.report({'accuracy': acc}, self)
loss.name = 'loss'
return loss
示例3: softmax_cross_entropy
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import log_softmax [as 別名]
def softmax_cross_entropy(self, y, t):
import numpy as np
log_softmax = F.log_softmax(y)
# SelectItem is not supported by onnx-chainer.
# TODO(hamaji): Support it?
# log_prob = F.select_item(log_softmax, t)
# TODO(hamaji): Currently, F.sum with axis=1 cannot be
# backpropped properly.
# log_prob = F.sum(log_softmax * t, axis=1)
# self.batch_size = chainer.Variable(np.array(t.size, np.float32),
# name='batch_size')
# return -F.sum(log_prob, axis=0) / self.batch_size
log_prob = F.sum(log_softmax * t, axis=(0, 1))
batch_size = chainer.Variable(self.xp.array(t.shape[0], np.float32),
name='batch_size')
self.extra_inputs = [batch_size]
loss = -log_prob / batch_size
loss.name = 'loss'
return loss
示例4: all_log_prob
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import log_softmax [as 別名]
def all_log_prob(self):
with chainer.force_backprop_mode():
if self.min_prob > 0:
return F.log(self.all_prob)
else:
return F.log_softmax(self.beta * self.logits)
示例5: log_probs
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import log_softmax [as 別名]
def log_probs(self):
return F.log_softmax(self.logits)
示例6: predict
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import log_softmax [as 別名]
def predict(self, s):
"""Predict single-label log probabilities
Args:
s (any): Current (hidden, cell) states.
Return:
(~chainer.Variable) log softmax vector
"""
y = self.out(self.proj(s[2][0]))
return F.log_softmax(y)
示例7: kl_categorical
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import log_softmax [as 別名]
def kl_categorical(p_logit, q_logit):
if isinstance(p_logit, chainer.Variable):
xp = cuda.get_array_module(p_logit.data)
else:
xp = cuda.get_array_module(p_logit)
p = F.softmax(p_logit)
_kl = F.sum(p * (F.log_softmax(p_logit) - F.log_softmax(q_logit)), 1)
return F.sum(_kl) / xp.prod(xp.array(_kl.shape))
示例8: cross_entropy
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import log_softmax [as 別名]
def cross_entropy(logit, y):
# y should be one-hot encoded probability
return - F.sum(y * F.log_softmax(logit)) / logit.shape[0]
示例9: entropy_y_x
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import log_softmax [as 別名]
def entropy_y_x(p_logit):
p = F.softmax(p_logit)
return - F.sum(p * F.log_softmax(p_logit)) / p_logit.shape[0]
示例10: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import log_softmax [as 別名]
def forward(self, inputs, device):
x, = inputs
return functions.log_softmax(x, axis=self.axis),
示例11: setUp
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import log_softmax [as 別名]
def setUp(self):
BaseSoftTarget.setUp(self)
self.t = functions.softmax(self.x).array
self.expect = numpy.sum(-self.t * functions.log_softmax(self.x).array,
axis=1)
if self.reduce == 'mean':
self.expect = numpy.average(self.expect)
示例12: dirichlet_likelihood
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import log_softmax [as 別名]
def dirichlet_likelihood(weights, alpha=None):
""" Calculate the log likelihood of the observed topic proportions.
A negative likelihood is more likely than a negative likelihood.
Args:
weights (chainer.Variable): Unnormalized weight vector. The vector
will be passed through a softmax function that will map the input
onto a probability simplex.
alpha (float): The Dirichlet concentration parameter. Alpha
greater than 1.0 results in very dense topic weights such
that each document belongs to many topics. Alpha < 1.0 results
in sparser topic weights. The default is to set alpha to
1.0 / n_topics, effectively enforcing the prior belief that a
document belong to very topics at once.
Returns:
~chainer.Variable: Output loss variable.
"""
if type(weights) is Variable:
n_topics = weights.data.shape[1]
else:
n_topics = weights.W.data.shape[1]
if alpha is None:
alpha = 1.0 / n_topics
if type(weights) is Variable:
log_proportions = F.log_softmax(weights)
else:
log_proportions = F.log_softmax(weights.W)
loss = (alpha - 1.0) * log_proportions
return -F.sum(loss)
示例13: decode
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import log_softmax [as 別名]
def decode(self, sample, bow):
""" Decode latent document vectors back into word counts
(n_docs, n_vocab).
"""
logprob = F.log_softmax(self.embedding(sample))
# This is equivalent to a softmax_cross_entropy where instead of
# guessing 1 of N words we have repeated observations
# Normal softmax for guessing the next word is:
# t log softmax(x), where t is 0 or 1
# Softmax for guessing word counts is simply doing
# the above more times, so multiply by the count
# count log softmax(x)
loss = -F.sum(bow * logprob)
return loss
示例14: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import log_softmax [as 別名]
def forward(self, ids, bow):
bow, ids = utils.move(self.xp, bow, ids)
proportions = self.proportions(ids)
ld = dirichlet_likelihood(proportions)
doc = F.matmul(F.softmax(proportions), self.factors())
logp = F.dropout(self.embedding(doc))
# loss = -F.sum(bow * F.log_softmax(logp))
sources, targets, counts = [], [], []
lpi = F.sum(bow * F.log_softmax(logp), axis=1)
loss = -F.sum(lpi)
return loss, ld
示例15: kl_loss
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import log_softmax [as 別名]
def kl_loss(xp, p_logit, q_logit):
p = F.softmax(p_logit)
_kl = F.sum(p * (F.log_softmax(p_logit) - F.log_softmax(q_logit)), 1)
return F.sum(_kl) / xp.prod(xp.array(_kl.shape))