當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.local_response_normalization方法代碼示例

本文整理匯總了Python中chainer.functions.local_response_normalization方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.local_response_normalization方法的具體用法?Python functions.local_response_normalization怎麽用?Python functions.local_response_normalization使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.local_response_normalization方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def __call__(self, x, t):
        self.clear()
        h = F.max_pooling_2d(F.relu(
            F.local_response_normalization(self.conv1(x))), 3, stride=2)
        h = F.max_pooling_2d(F.relu(
            F.local_response_normalization(self.conv2(h))), 3, stride=2)
        h = F.relu(self.conv3(h))
        h = F.relu(self.conv4(h))
        h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2)
        h = F.dropout(F.relu(self.fc6(h)), train=self.train)
        h = F.dropout(F.relu(self.fc7(h)), train=self.train)
        h = self.fc8(h)

        self.loss = F.softmax_cross_entropy(h, t)
        self.accuracy = F.accuracy(h, t)
        return self.loss 
開發者ID:masataka46,項目名稱:MultimodalDL,代碼行數:18,代碼來源:mdl_rgb_d.py

示例2: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def __call__(self, x):
        h = F.relu(self.conv1(x))
        h = F.max_pooling_2d(h, 3, stride=2)
        h = F.local_response_normalization(h)

        h = F.relu(self.conv2(h))
        h = F.max_pooling_2d(h, 3, stride=2)
        h = F.local_response_normalization(h)

        h = F.relu(self.conv3(h))
        h = F.relu(self.conv4(h))
        h = F.relu(self.conv5(h))
        h = F.max_pooling_2d(h, 3, stride=2)

        h = F.dropout(F.relu(self.fc6(h)), train=self.train, ratio=0.6)
        h = F.dropout(F.relu(self.fc7(h)), train=self.train, ratio=0.6)

        return self.fc8(h) 
開發者ID:mitmul,項目名稱:deeppose,代碼行數:20,代碼來源:AlexNet.py

示例3: predict

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def predict(self, x):
        h = F.max_pooling_2d(F.relu(
            F.local_response_normalization(self.conv1(x))), 3, stride=2)
        h = F.max_pooling_2d(F.relu(
            F.local_response_normalization(self.conv2(h))), 3, stride=2)
        h = F.relu(self.conv3(h))
        h = F.relu(self.conv4(h))
        h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2)
        h = F.dropout(F.relu(self.fc6(h)), train=self.train)
        h = F.dropout(F.relu(self.fc7(h)), train=self.train)
        h = F.dropout(F.relu(self.fc8(h)), train=self.train)
        h = self.fc9(h)

        return h 
開發者ID:icoxfog417,項目名稱:mlimages,代碼行數:16,代碼來源:alex.py

示例4: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def forward(self, x):
        return F.local_response_normalization(x)


# =========================================== 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:7,代碼來源:LRN.py

示例5: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def __call__(self, x):
        x = super(AlexConv, self).__call__(x)
        if self.use_lrn:
            x = F.local_response_normalization(x)
        return x 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:7,代碼來源:alexnet.py

示例6: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def forward(self, inputs, device):
        x, = inputs
        y = functions.local_response_normalization(x)
        return y, 
開發者ID:chainer,項目名稱:chainer,代碼行數:6,代碼來源:test_local_response_normalization.py

示例7: _setup_lrn

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def _setup_lrn(self, layer):
        param = layer.lrn_param
        if param.norm_region != param.ACROSS_CHANNELS:
            raise RuntimeError('Within-channel LRN is not supported')

        fwd = _SingleArgumentFunction(
            functions.local_response_normalization,
            n=param.local_size, k=param.k,
            alpha=param.alpha / param.local_size, beta=param.beta)
        self.forwards[layer.name] = fwd
        self._add_layer(layer) 
開發者ID:chainer,項目名稱:chainer,代碼行數:13,代碼來源:caffe_function.py

示例8: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def __call__(self, x, y, t):
        self.clear()
        hR = F.max_pooling_2d(F.relu(
            F.local_response_normalization(self.convR1(x))), 3, stride=2)
        hR = F.max_pooling_2d(F.relu(
            F.local_response_normalization(self.convR2(hR))), 3, stride=2)
        hR = F.relu(self.convR3(hR))
        hR = F.relu(self.convR4(hR))
        hR = F.max_pooling_2d(F.relu(self.convR5(hR)), 3, stride=2)
        hR = F.dropout(F.relu(self.fcR6(hR)), train=self.train)
        hR = F.dropout(F.relu(self.fcR7(hR)), train=self.train)
        hD = F.max_pooling_2d(F.relu(
            F.local_response_normalization(self.convD1(y))), 3, stride=2)
        hD = F.max_pooling_2d(F.relu(
            F.local_response_normalization(self.convD2(hD))), 3, stride=2)
        hD = F.relu(self.convD3(hD))
        hD = F.relu(self.convD4(hD))
        hD = F.max_pooling_2d(F.relu(self.convD5(hD)), 3, stride=2)
        hD = F.dropout(F.relu(self.fcD6(hD)), train=self.train)
        hD = F.dropout(F.relu(self.fcD7(hD)), train=self.train)
        h = F.dropout(F.relu(self.fc8(hR, hD)), train=self.train)
        h = self.fc9(h)

        self.loss = F.softmax_cross_entropy(h, t)
        self.accuracy = F.accuracy(h, t)
        return self.loss 
開發者ID:masataka46,項目名稱:MultimodalDL,代碼行數:28,代碼來源:mdl_full.py

示例9: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def forward(self, x):
        """Compute an image-wise score from a batch of images

        Args:
            x (chainer.Variable): A variable with 4D image array.

        Returns:
            chainer.Variable:
            An image-wise score. Its channel size is :obj:`self.n_class`.

        """
        h = F.local_response_normalization(x, 5, 1, 1e-4 / 5., 0.75)
        h, indices1 = F.max_pooling_2d(
            F.relu(self.conv1_bn(self.conv1(h))), 2, 2, return_indices=True)
        h, indices2 = F.max_pooling_2d(
            F.relu(self.conv2_bn(self.conv2(h))), 2, 2, return_indices=True)
        h, indices3 = F.max_pooling_2d(
            F.relu(self.conv3_bn(self.conv3(h))), 2, 2, return_indices=True)
        h, indices4 = F.max_pooling_2d(
            F.relu(self.conv4_bn(self.conv4(h))), 2, 2, return_indices=True)
        h = self._upsampling_2d(h, indices4)
        h = self.conv_decode4_bn(self.conv_decode4(h))
        h = self._upsampling_2d(h, indices3)
        h = self.conv_decode3_bn(self.conv_decode3(h))
        h = self._upsampling_2d(h, indices2)
        h = self.conv_decode2_bn(self.conv_decode2(h))
        h = self._upsampling_2d(h, indices1)
        h = self.conv_decode1_bn(self.conv_decode1(h))
        score = self.conv_classifier(h)
        return score 
開發者ID:chainer,項目名稱:chainercv,代碼行數:32,代碼來源:segnet_basic.py

示例10: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def forward(self, x):
        h = F.relu(self.conv1(x))
        h = F.local_response_normalization(
            F.max_pooling_2d(h, 3, stride=2), n=5)

        h = F.relu(self.conv2_reduce(h))
        h = F.relu(self.conv2(h))
        h = F.max_pooling_2d(
            F.local_response_normalization(h, n=5), 3, stride=2)

        h = self.inc3a(h)
        h = self.inc3b(h)
        h = F.max_pooling_2d(h, 3, stride=2)
        h = self.inc4a(h)

        if chainer.config.train:
            out1 = F.average_pooling_2d(h, 5, stride=3)
            out1 = F.relu(self.loss1_conv(out1))
            out1 = F.relu(self.loss1_fc1(out1))
            out1 = self.loss1_fc2(out1)

        h = self.inc4b(h)
        h = self.inc4c(h)
        h = self.inc4d(h)

        if chainer.config.train:
            out2 = F.average_pooling_2d(h, 5, stride=3)
            out2 = F.relu(self.loss2_conv(out2))
            out2 = F.relu(self.loss2_fc1(out2))
            out2 = self.loss2_fc2(out2)

        h = self.inc4e(h)
        h = F.max_pooling_2d(h, 3, stride=2)
        h = self.inc5a(h)
        h = self.inc5b(h)

        h = F.dropout(F.average_pooling_2d(h, 7, stride=1), 0.4)
        out3 = self.loss3_fc(h)
        return out1, out2, out3 
開發者ID:soumith,項目名稱:convnet-benchmarks,代碼行數:41,代碼來源:googlenet.py

示例11: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def __call__(self, x, depth=1):
        assert 1 <= depth <= self.n_encdec
        h = F.local_response_normalization(x, 5, 1, 0.0005, 0.75)

        # Unchain the inner EncDecs after the given depth
        encdec = getattr(self, 'encdec{}'.format(depth))
        encdec.inside = None

        h = self.encdec1(h, train=self.train)
        h = self.conv_cls(h)
        return h 
開發者ID:pfnet-research,項目名稱:chainer-segnet,代碼行數:13,代碼來源:segnet.py

示例12: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def __call__(self, x_img, t_detection, **others):
        # Alexnet
        h = F.relu(self.conv1(x_img))  # conv1
        h = F.max_pooling_2d(h, 3, stride=2, pad=0)  # max1
        h = F.local_response_normalization(h)  # norm1
        h = F.relu(self.conv2(h))  # conv2
        h = F.max_pooling_2d(h, 3, stride=2, pad=0)  # max2
        h = F.local_response_normalization(h)  # norm2
        h = F.relu(self.conv3(h))  # conv3
        h = F.relu(self.conv4(h))  # conv4
        h = F.relu(self.conv5(h))  # conv5
        h = F.max_pooling_2d(h, 3, stride=2, pad=0)  # pool5

        h = F.dropout(F.relu(self.fc6(h)), train=self.train)  # fc6
        h = F.dropout(F.relu(self.fc7(h)), train=self.train)  # fc7
        h_detection = self.fc8(h)  # fc8

        # Loss
        loss = F.softmax_cross_entropy(h_detection, t_detection)

        chainer.report({'loss': loss}, self)

        # Prediction
        h_detection = F.argmax(h_detection, axis=1)

        # Report results
        predict_data = {'img': x_img, 'detection': h_detection}
        teacher_data = {'img': x_img, 'detection': t_detection}
        chainer.report({'predict': predict_data}, self)
        chainer.report({'teacher': teacher_data}, self)

        # Report layer weights
        chainer.report({'conv1_w': {'weights': self.conv1.W},
                        'conv2_w': {'weights': self.conv2.W},
                        'conv3_w': {'weights': self.conv3.W},
                        'conv4_w': {'weights': self.conv4.W},
                        'conv5_w': {'weights': self.conv5.W}}, self)

        return loss 
開發者ID:takiyu,項目名稱:hyperface,代碼行數:41,代碼來源:models.py

示例13: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def __call__(self, x, subtract_mean=True):
        if subtract_mean:
            x = x - self._image_mean
#        h = super(ModifiedGoogLeNet, self).__call__(
#            x, layers=['pool5'], train=train)['pool5']
#        h = self.bn_fc(h, test=not train)
#        y = self.fc(h)
#        return y
        h = F.relu(self.conv1(x))
        h = F.max_pooling_2d(h, 3, stride=2)
        h = F.local_response_normalization(h, n=5, k=1, alpha=1e-4/5)
        h = F.relu(self.conv2_reduce(h))
        h = F.relu(self.conv2(h))
        h = F.local_response_normalization(h, n=5, k=1, alpha=1e-4/5)
        h = F.max_pooling_2d(h, 3, stride=2)
        h = self.inc3a(h)
        h = self.inc3b(h)
        h = F.max_pooling_2d(h, 3, stride=2)
        h = self.inc4a(h)
        h = self.inc4b(h)
        h = self.inc4c(h)
        h = self.inc4d(h)
        h = self.inc4e(h)
        h = F.max_pooling_2d(h, 3, stride=2)
        h = self.inc5a(h)
        h = self.inc5b(h)
        h = F.average_pooling_2d(h, 7, stride=1)
        h = self.bn_fc(h)
        y = self.fc(h)
        if self.normalize_output:
            y = F.normalize(y)
        return y 
開發者ID:ronekko,項目名稱:deep_metric_learning,代碼行數:34,代碼來源:modified_googlenet.py

示例14: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def forward(self, x):
        y1 = self.model['conv1/7x7_s2'](x)
        h = F.relu(y1)
        h = F.local_response_normalization(self.pool_func(h, 3, stride=2), n=5)
        h = F.relu(self.model['conv2/3x3_reduce'](h))
        y2 = self.model['conv2/3x3'](h)
        h = F.relu(y2)
        h = self.pool_func(F.local_response_normalization(h, n=5), 3, stride=2)
        out1 = self.model['inception_3a/1x1'](h)
        out3 = self.model['inception_3a/3x3'](F.relu(self.model['inception_3a/3x3_reduce'](h)))
        out5 = self.model['inception_3a/5x5'](F.relu(self.model['inception_3a/5x5_reduce'](h)))
        pool = self.model['inception_3a/pool_proj'](self.pool_func(h, 3, stride=1, pad=1))
        y3 = F.concat((out1, out3, out5, pool), axis=1)
        h = F.relu(y3)

        out1 = self.model['inception_3b/1x1'](h)
        out3 = self.model['inception_3b/3x3'](F.relu(self.model['inception_3b/3x3_reduce'](h)))
        out5 = self.model['inception_3b/5x5'](F.relu(self.model['inception_3b/5x5_reduce'](h)))
        pool = self.model['inception_3b/pool_proj'](self.pool_func(h, 3, stride=1, pad=1))
        y4 = F.concat((out1, out3, out5, pool), axis=1)
        h = F.relu(y4)

        h = self.pool_func(h, 3, stride=2)

        out1 = self.model['inception_4a/1x1'](h)
        out3 = self.model['inception_4a/3x3'](F.relu(self.model['inception_4a/3x3_reduce'](h)))
        out5 = self.model['inception_4a/5x5'](F.relu(self.model['inception_4a/5x5_reduce'](h)))
        pool = self.model['inception_4a/pool_proj'](self.pool_func(h, 3, stride=1, pad=1))
        y5 = F.concat((out1, out3, out5, pool), axis=1)
        h = F.relu(y5)

        out1 = self.model['inception_4b/1x1'](h)
        out3 = self.model['inception_4b/3x3'](F.relu(self.model['inception_4b/3x3_reduce'](h)))
        out5 = self.model['inception_4b/5x5'](F.relu(self.model['inception_4b/5x5_reduce'](h)))
        pool = self.model['inception_4b/pool_proj'](self.pool_func(h, 3, stride=1, pad=1))
        y6 = F.concat((out1, out3, out5, pool), axis=1)
        h = F.relu(y6)

        return [y1,y2,y3,y4,y5,y6] 
開發者ID:pfnet-research,項目名稱:chainer-gogh,代碼行數:41,代碼來源:models.py

示例15: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def forward(self, x):
        h = F.relu(self.conv1(x))
        h = F.local_response_normalization(
            F.max_pooling_2d(h, 3, stride=2), n=5)
        h = F.relu(self.conv2_reduce(h))
        h = F.relu(self.conv2(h))
        h = F.max_pooling_2d(
            F.local_response_normalization(h, n=5), 3, stride=2)

        h = self.inc3a(h)
        h = self.inc3b(h)
        h = F.max_pooling_2d(h, 3, stride=2)
        h = self.inc4a(h)

        l = F.average_pooling_2d(h, 5, stride=3)
        l = F.relu(self.loss1_conv(l))
        l = F.relu(self.loss1_fc1(l))
        l = self.loss1_fc2(l)
        loss1 = l

        h = self.inc4b(h)
        h = self.inc4c(h)
        h = self.inc4d(h)

        l = F.average_pooling_2d(h, 5, stride=3)
        l = F.relu(self.loss2_conv(l))
        l = F.relu(self.loss2_fc1(l))
        l = self.loss2_fc2(l)
        loss2 = l
        
        h = self.inc4e(h)
        h = F.max_pooling_2d(h, 3, stride=2)
        h = self.inc5a(h)
        h = self.inc5b(h)

        h = F.average_pooling_2d(h, 7, stride=1)
        h = self.loss3_fc(F.dropout(h, 0.4, train=self.train))
        loss3 = h

        return loss1,loss2,loss3 
開發者ID:uei,項目名稱:deel,代碼行數:42,代碼來源:googlenet.py


注:本文中的chainer.functions.local_response_normalization方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。