本文整理匯總了Python中chainer.functions.local_response_normalization方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.local_response_normalization方法的具體用法?Python functions.local_response_normalization怎麽用?Python functions.local_response_normalization使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.functions
的用法示例。
在下文中一共展示了functions.local_response_normalization方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def __call__(self, x, t):
self.clear()
h = F.max_pooling_2d(F.relu(
F.local_response_normalization(self.conv1(x))), 3, stride=2)
h = F.max_pooling_2d(F.relu(
F.local_response_normalization(self.conv2(h))), 3, stride=2)
h = F.relu(self.conv3(h))
h = F.relu(self.conv4(h))
h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2)
h = F.dropout(F.relu(self.fc6(h)), train=self.train)
h = F.dropout(F.relu(self.fc7(h)), train=self.train)
h = self.fc8(h)
self.loss = F.softmax_cross_entropy(h, t)
self.accuracy = F.accuracy(h, t)
return self.loss
示例2: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def __call__(self, x):
h = F.relu(self.conv1(x))
h = F.max_pooling_2d(h, 3, stride=2)
h = F.local_response_normalization(h)
h = F.relu(self.conv2(h))
h = F.max_pooling_2d(h, 3, stride=2)
h = F.local_response_normalization(h)
h = F.relu(self.conv3(h))
h = F.relu(self.conv4(h))
h = F.relu(self.conv5(h))
h = F.max_pooling_2d(h, 3, stride=2)
h = F.dropout(F.relu(self.fc6(h)), train=self.train, ratio=0.6)
h = F.dropout(F.relu(self.fc7(h)), train=self.train, ratio=0.6)
return self.fc8(h)
示例3: predict
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def predict(self, x):
h = F.max_pooling_2d(F.relu(
F.local_response_normalization(self.conv1(x))), 3, stride=2)
h = F.max_pooling_2d(F.relu(
F.local_response_normalization(self.conv2(h))), 3, stride=2)
h = F.relu(self.conv3(h))
h = F.relu(self.conv4(h))
h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2)
h = F.dropout(F.relu(self.fc6(h)), train=self.train)
h = F.dropout(F.relu(self.fc7(h)), train=self.train)
h = F.dropout(F.relu(self.fc8(h)), train=self.train)
h = self.fc9(h)
return h
示例4: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def forward(self, x):
return F.local_response_normalization(x)
# ===========================================
示例5: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def __call__(self, x):
x = super(AlexConv, self).__call__(x)
if self.use_lrn:
x = F.local_response_normalization(x)
return x
示例6: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def forward(self, inputs, device):
x, = inputs
y = functions.local_response_normalization(x)
return y,
示例7: _setup_lrn
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def _setup_lrn(self, layer):
param = layer.lrn_param
if param.norm_region != param.ACROSS_CHANNELS:
raise RuntimeError('Within-channel LRN is not supported')
fwd = _SingleArgumentFunction(
functions.local_response_normalization,
n=param.local_size, k=param.k,
alpha=param.alpha / param.local_size, beta=param.beta)
self.forwards[layer.name] = fwd
self._add_layer(layer)
示例8: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def __call__(self, x, y, t):
self.clear()
hR = F.max_pooling_2d(F.relu(
F.local_response_normalization(self.convR1(x))), 3, stride=2)
hR = F.max_pooling_2d(F.relu(
F.local_response_normalization(self.convR2(hR))), 3, stride=2)
hR = F.relu(self.convR3(hR))
hR = F.relu(self.convR4(hR))
hR = F.max_pooling_2d(F.relu(self.convR5(hR)), 3, stride=2)
hR = F.dropout(F.relu(self.fcR6(hR)), train=self.train)
hR = F.dropout(F.relu(self.fcR7(hR)), train=self.train)
hD = F.max_pooling_2d(F.relu(
F.local_response_normalization(self.convD1(y))), 3, stride=2)
hD = F.max_pooling_2d(F.relu(
F.local_response_normalization(self.convD2(hD))), 3, stride=2)
hD = F.relu(self.convD3(hD))
hD = F.relu(self.convD4(hD))
hD = F.max_pooling_2d(F.relu(self.convD5(hD)), 3, stride=2)
hD = F.dropout(F.relu(self.fcD6(hD)), train=self.train)
hD = F.dropout(F.relu(self.fcD7(hD)), train=self.train)
h = F.dropout(F.relu(self.fc8(hR, hD)), train=self.train)
h = self.fc9(h)
self.loss = F.softmax_cross_entropy(h, t)
self.accuracy = F.accuracy(h, t)
return self.loss
示例9: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def forward(self, x):
"""Compute an image-wise score from a batch of images
Args:
x (chainer.Variable): A variable with 4D image array.
Returns:
chainer.Variable:
An image-wise score. Its channel size is :obj:`self.n_class`.
"""
h = F.local_response_normalization(x, 5, 1, 1e-4 / 5., 0.75)
h, indices1 = F.max_pooling_2d(
F.relu(self.conv1_bn(self.conv1(h))), 2, 2, return_indices=True)
h, indices2 = F.max_pooling_2d(
F.relu(self.conv2_bn(self.conv2(h))), 2, 2, return_indices=True)
h, indices3 = F.max_pooling_2d(
F.relu(self.conv3_bn(self.conv3(h))), 2, 2, return_indices=True)
h, indices4 = F.max_pooling_2d(
F.relu(self.conv4_bn(self.conv4(h))), 2, 2, return_indices=True)
h = self._upsampling_2d(h, indices4)
h = self.conv_decode4_bn(self.conv_decode4(h))
h = self._upsampling_2d(h, indices3)
h = self.conv_decode3_bn(self.conv_decode3(h))
h = self._upsampling_2d(h, indices2)
h = self.conv_decode2_bn(self.conv_decode2(h))
h = self._upsampling_2d(h, indices1)
h = self.conv_decode1_bn(self.conv_decode1(h))
score = self.conv_classifier(h)
return score
示例10: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def forward(self, x):
h = F.relu(self.conv1(x))
h = F.local_response_normalization(
F.max_pooling_2d(h, 3, stride=2), n=5)
h = F.relu(self.conv2_reduce(h))
h = F.relu(self.conv2(h))
h = F.max_pooling_2d(
F.local_response_normalization(h, n=5), 3, stride=2)
h = self.inc3a(h)
h = self.inc3b(h)
h = F.max_pooling_2d(h, 3, stride=2)
h = self.inc4a(h)
if chainer.config.train:
out1 = F.average_pooling_2d(h, 5, stride=3)
out1 = F.relu(self.loss1_conv(out1))
out1 = F.relu(self.loss1_fc1(out1))
out1 = self.loss1_fc2(out1)
h = self.inc4b(h)
h = self.inc4c(h)
h = self.inc4d(h)
if chainer.config.train:
out2 = F.average_pooling_2d(h, 5, stride=3)
out2 = F.relu(self.loss2_conv(out2))
out2 = F.relu(self.loss2_fc1(out2))
out2 = self.loss2_fc2(out2)
h = self.inc4e(h)
h = F.max_pooling_2d(h, 3, stride=2)
h = self.inc5a(h)
h = self.inc5b(h)
h = F.dropout(F.average_pooling_2d(h, 7, stride=1), 0.4)
out3 = self.loss3_fc(h)
return out1, out2, out3
示例11: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def __call__(self, x, depth=1):
assert 1 <= depth <= self.n_encdec
h = F.local_response_normalization(x, 5, 1, 0.0005, 0.75)
# Unchain the inner EncDecs after the given depth
encdec = getattr(self, 'encdec{}'.format(depth))
encdec.inside = None
h = self.encdec1(h, train=self.train)
h = self.conv_cls(h)
return h
示例12: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def __call__(self, x_img, t_detection, **others):
# Alexnet
h = F.relu(self.conv1(x_img)) # conv1
h = F.max_pooling_2d(h, 3, stride=2, pad=0) # max1
h = F.local_response_normalization(h) # norm1
h = F.relu(self.conv2(h)) # conv2
h = F.max_pooling_2d(h, 3, stride=2, pad=0) # max2
h = F.local_response_normalization(h) # norm2
h = F.relu(self.conv3(h)) # conv3
h = F.relu(self.conv4(h)) # conv4
h = F.relu(self.conv5(h)) # conv5
h = F.max_pooling_2d(h, 3, stride=2, pad=0) # pool5
h = F.dropout(F.relu(self.fc6(h)), train=self.train) # fc6
h = F.dropout(F.relu(self.fc7(h)), train=self.train) # fc7
h_detection = self.fc8(h) # fc8
# Loss
loss = F.softmax_cross_entropy(h_detection, t_detection)
chainer.report({'loss': loss}, self)
# Prediction
h_detection = F.argmax(h_detection, axis=1)
# Report results
predict_data = {'img': x_img, 'detection': h_detection}
teacher_data = {'img': x_img, 'detection': t_detection}
chainer.report({'predict': predict_data}, self)
chainer.report({'teacher': teacher_data}, self)
# Report layer weights
chainer.report({'conv1_w': {'weights': self.conv1.W},
'conv2_w': {'weights': self.conv2.W},
'conv3_w': {'weights': self.conv3.W},
'conv4_w': {'weights': self.conv4.W},
'conv5_w': {'weights': self.conv5.W}}, self)
return loss
示例13: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def __call__(self, x, subtract_mean=True):
if subtract_mean:
x = x - self._image_mean
# h = super(ModifiedGoogLeNet, self).__call__(
# x, layers=['pool5'], train=train)['pool5']
# h = self.bn_fc(h, test=not train)
# y = self.fc(h)
# return y
h = F.relu(self.conv1(x))
h = F.max_pooling_2d(h, 3, stride=2)
h = F.local_response_normalization(h, n=5, k=1, alpha=1e-4/5)
h = F.relu(self.conv2_reduce(h))
h = F.relu(self.conv2(h))
h = F.local_response_normalization(h, n=5, k=1, alpha=1e-4/5)
h = F.max_pooling_2d(h, 3, stride=2)
h = self.inc3a(h)
h = self.inc3b(h)
h = F.max_pooling_2d(h, 3, stride=2)
h = self.inc4a(h)
h = self.inc4b(h)
h = self.inc4c(h)
h = self.inc4d(h)
h = self.inc4e(h)
h = F.max_pooling_2d(h, 3, stride=2)
h = self.inc5a(h)
h = self.inc5b(h)
h = F.average_pooling_2d(h, 7, stride=1)
h = self.bn_fc(h)
y = self.fc(h)
if self.normalize_output:
y = F.normalize(y)
return y
示例14: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def forward(self, x):
y1 = self.model['conv1/7x7_s2'](x)
h = F.relu(y1)
h = F.local_response_normalization(self.pool_func(h, 3, stride=2), n=5)
h = F.relu(self.model['conv2/3x3_reduce'](h))
y2 = self.model['conv2/3x3'](h)
h = F.relu(y2)
h = self.pool_func(F.local_response_normalization(h, n=5), 3, stride=2)
out1 = self.model['inception_3a/1x1'](h)
out3 = self.model['inception_3a/3x3'](F.relu(self.model['inception_3a/3x3_reduce'](h)))
out5 = self.model['inception_3a/5x5'](F.relu(self.model['inception_3a/5x5_reduce'](h)))
pool = self.model['inception_3a/pool_proj'](self.pool_func(h, 3, stride=1, pad=1))
y3 = F.concat((out1, out3, out5, pool), axis=1)
h = F.relu(y3)
out1 = self.model['inception_3b/1x1'](h)
out3 = self.model['inception_3b/3x3'](F.relu(self.model['inception_3b/3x3_reduce'](h)))
out5 = self.model['inception_3b/5x5'](F.relu(self.model['inception_3b/5x5_reduce'](h)))
pool = self.model['inception_3b/pool_proj'](self.pool_func(h, 3, stride=1, pad=1))
y4 = F.concat((out1, out3, out5, pool), axis=1)
h = F.relu(y4)
h = self.pool_func(h, 3, stride=2)
out1 = self.model['inception_4a/1x1'](h)
out3 = self.model['inception_4a/3x3'](F.relu(self.model['inception_4a/3x3_reduce'](h)))
out5 = self.model['inception_4a/5x5'](F.relu(self.model['inception_4a/5x5_reduce'](h)))
pool = self.model['inception_4a/pool_proj'](self.pool_func(h, 3, stride=1, pad=1))
y5 = F.concat((out1, out3, out5, pool), axis=1)
h = F.relu(y5)
out1 = self.model['inception_4b/1x1'](h)
out3 = self.model['inception_4b/3x3'](F.relu(self.model['inception_4b/3x3_reduce'](h)))
out5 = self.model['inception_4b/5x5'](F.relu(self.model['inception_4b/5x5_reduce'](h)))
pool = self.model['inception_4b/pool_proj'](self.pool_func(h, 3, stride=1, pad=1))
y6 = F.concat((out1, out3, out5, pool), axis=1)
h = F.relu(y6)
return [y1,y2,y3,y4,y5,y6]
示例15: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import local_response_normalization [as 別名]
def forward(self, x):
h = F.relu(self.conv1(x))
h = F.local_response_normalization(
F.max_pooling_2d(h, 3, stride=2), n=5)
h = F.relu(self.conv2_reduce(h))
h = F.relu(self.conv2(h))
h = F.max_pooling_2d(
F.local_response_normalization(h, n=5), 3, stride=2)
h = self.inc3a(h)
h = self.inc3b(h)
h = F.max_pooling_2d(h, 3, stride=2)
h = self.inc4a(h)
l = F.average_pooling_2d(h, 5, stride=3)
l = F.relu(self.loss1_conv(l))
l = F.relu(self.loss1_fc1(l))
l = self.loss1_fc2(l)
loss1 = l
h = self.inc4b(h)
h = self.inc4c(h)
h = self.inc4d(h)
l = F.average_pooling_2d(h, 5, stride=3)
l = F.relu(self.loss2_conv(l))
l = F.relu(self.loss2_fc1(l))
l = self.loss2_fc2(l)
loss2 = l
h = self.inc4e(h)
h = F.max_pooling_2d(h, 3, stride=2)
h = self.inc5a(h)
h = self.inc5b(h)
h = F.average_pooling_2d(h, 7, stride=1)
h = self.loss3_fc(F.dropout(h, 0.4, train=self.train))
loss3 = h
return loss1,loss2,loss3