本文整理匯總了Python中chainer.functions.linear方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.linear方法的具體用法?Python functions.linear怎麽用?Python functions.linear使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.functions
的用法示例。
在下文中一共展示了functions.linear方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import linear [as 別名]
def __call__(self, x):
if self.mu.W.array is None:
self.mu.W.initialize((self.out_size, numpy.prod(x.shape[1:])))
if self.sigma.W.array is None:
self.sigma.W.initialize((self.out_size, numpy.prod(x.shape[1:])))
# use info of sigma.W to avoid strange error messages
dtype = self.sigma.W.dtype
out_size, in_size = self.sigma.W.shape
eps = self._eps(in_size + out_size, dtype)
eps_x = eps[:in_size]
eps_y = eps[in_size:]
W = muladd(self.sigma.W, self.xp.outer(eps_y, eps_x), self.mu.W)
if self.nobias:
return F.linear(x, W)
else:
b = muladd(self.sigma.b, eps_y, self.mu.b)
return F.linear(x, W, b)
示例2: _step_rnn_tanh
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import linear [as 別名]
def _step_rnn_tanh(rnn, x, state):
assert isinstance(rnn, L.NStepRNNTanh)
assert len(rnn.ws) == 1
assert len(rnn.bs) == 1
assert len(rnn.ws[0]) == 2
assert len(rnn.bs[0]) == 2
if state is None:
xp = rnn.xp
h = xp.zeros((len(x), rnn.out_size), dtype=np.float32)
else:
h = state
w0, w1 = rnn.ws[0]
b0, b1 = rnn.bs[0]
h = F.tanh(F.linear(x, w0, b0) + F.linear(h, w1, b1))
return h, h
示例3: f
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import linear [as 別名]
def f(self, x):
for i, (w, b) in enumerate(zip(self._lst_w, self._lst_b)):
x = F.linear(x, w, b)
if i != len(self._lst_w) - 1:
x = F.tanh(x)
else:
return self._out_fn(x)
示例4: __init__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import linear [as 別名]
def __init__(self, n_units, n_vocab, encoder, max_memory, hops):
super(MemNN, self).__init__()
with self.init_scope():
self.embeds = chainer.ChainList()
self.temporals = chainer.ChainList()
normal = initializers.Normal()
# Shares both embeded matrixes in adjacent layres
for _ in six.moves.range(hops + 1):
self.embeds.append(L.EmbedID(n_vocab, n_units, initialW=normal))
self.temporals.append(
L.EmbedID(max_memory, n_units, initialW=normal))
self.memories = [
Memory(self.embeds[i], self.embeds[i + 1],
self.temporals[i], self.temporals[i + 1], encoder)
for i in six.moves.range(hops)
]
# The question embedding is same as the input embedding of the
# first layer
self.B = self.embeds[0]
# The answer prediction matrix W is same as the final output layer
self.W = lambda u: F.linear(u, self.embeds[-1].W)
self.encoder = encoder
self.n_units = n_units
self.max_memory = max_memory
self.hops = hops
示例5: test_LinearFunction
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import linear [as 別名]
def test_LinearFunction(self):
W = numpy.random.uniform(-1, 1, (1, numpy.prod(self.x.shape[1:])))
class Link(chainer.Chain):
def __call__(self, x):
return F.linear(x, W)
assert_export_import_match(Link(), self.x)
示例6: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import linear [as 別名]
def forward(self, inputs, device):
if self.nobias:
x, W = inputs
b = None
else:
x, W, b = inputs
y = functions.linear(x, W, b, n_batch_axes=self.n_batch_axes)
return y,
示例7: test_1
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import linear [as 別名]
def test_1(self):
with chainer.using_config('use_ideep', 'never'):
n_batches = 1 # important
in_dims = (2, 2)
out_dim = 3
x_shape = (n_batches,) + in_dims
w_shape = (out_dim, numpy.prod(in_dims),)
x = numpy.ones(x_shape, numpy.float32)
w = numpy.ones(w_shape, numpy.float32)
y = functions.linear(chainer.Variable(x), w)
z = functions.sum(y)
z.backward()
示例8: test_negative
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import linear [as 別名]
def test_negative(self):
n_batch_axes = -1
with pytest.raises(ValueError):
functions.linear(self.x, self.W, n_batch_axes=n_batch_axes)
示例9: lstm_without_dropout
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import linear [as 別名]
def lstm_without_dropout(n_layer, dropout, hx, cx, ws, bs, xs):
xws = [_stack_weight([w[2], w[0], w[1], w[3]]) for w in ws]
hws = [_stack_weight([w[6], w[4], w[5], w[7]]) for w in ws]
xbs = [_stack_weight([b[2], b[0], b[1], b[3]]) for b in bs]
hbs = [_stack_weight([b[6], b[4], b[5], b[7]]) for b in bs]
xs = [xs[i] for i in range(3)]
ys = []
for x in xs:
cx_next = []
hx_next = []
for layer in range(n_layer):
c = cx[layer]
h = hx[layer]
if layer != 0:
# Only multiply ratio
x = x * (1 / (1.0 - dropout))
lstm_in = F.linear(x, xws[layer], xbs[layer]) + \
F.linear(h, hws[layer], hbs[layer])
c_new, h_new = F.lstm(c, lstm_in)
cx_next.append(c_new)
hx_next.append(h_new)
x = h_new
cx = cx_next
hx = hx_next
ys.append(x)
cy = F.stack(cx)
hy = F.stack(hx)
return hy, cy, ys
示例10: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import linear [as 別名]
def __call__(self, x):
out = F.linear(x, self.W, self.b)
if self.scale is not None:
out *= F.broadcast_to(self.scale[None], out.shape)
return out
示例11: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import linear [as 別名]
def __call__(self, x):
if self.rf == 1:
size_out = x.shape[:-1] + (self.nf,)
x = F.linear(x.reshape(-1, x.shape[-1]), self.w, self.b)
x = x.reshape(*size_out)
else:
raise NotImplementedError
return x
示例12: __init__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import linear [as 別名]
def __init__(self, cfg, vocab=40990, n_ctx=512):
super(Model, self).__init__()
self.vocab = vocab
with self.init_scope():
self.embed = L.EmbedID(vocab, cfg.n_embd,
initializers.Normal(scale=0.02))
self.drop = lambda x: F.dropout(x, cfg.embd_pdrop)
block = Block(n_ctx, cfg, scale=True)
self.h = chainer.ChainList(*[copy.deepcopy(block)
for _ in range(cfg.n_layer)])
self.decoder = lambda x: F.linear(x, self.embed.W)
# To reproduce the noise_shape parameter of TF implementation
self.clf_dropout = lambda x: F.dropout(x, cfg.clf_pdrop)
示例13: squared_distance_matrix
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import linear [as 別名]
def squared_distance_matrix(X):
n = X.shape[0]
XX = F.sum(X ** 2.0, axis=1)
distances = -2.0 * F.linear(X, X)
distances = distances + F.broadcast_to(XX, (n, n))
distances = distances + F.broadcast_to(F.expand_dims(XX, 1), (n, n))
return distances