當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.huber_loss方法代碼示例

本文整理匯總了Python中chainer.functions.huber_loss方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.huber_loss方法的具體用法?Python functions.huber_loss怎麽用?Python functions.huber_loss使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.huber_loss方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: check_forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import huber_loss [as 別名]
def check_forward(self, x_data, t_data):
        x = chainer.Variable(x_data)
        t = chainer.Variable(t_data)
        loss = functions.huber_loss(x, t, delta=1, reduce=self.reduce)
        self.assertEqual(loss.data.dtype, self.dtype)
        loss_value = cuda.to_cpu(loss.data)

        diff_data = cuda.to_cpu(x_data) - cuda.to_cpu(t_data)
        loss_expect = numpy.zeros(self.shape)
        mask = numpy.abs(diff_data) < 1
        loss_expect[mask] = 0.5 * diff_data[mask] ** 2
        loss_expect[~mask] = numpy.abs(diff_data[~mask]) - 0.5
        if self.reduce == 'sum_along_second_axis':
            loss_expect = numpy.sum(loss_expect, axis=1)
        testing.assert_allclose(
            loss_value, loss_expect, **self.forward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:18,代碼來源:test_huber_loss.py

示例2: check_double_backward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import huber_loss [as 別名]
def check_double_backward(self, x_data, t_data, y_grad, x_grad_grad,
                              t_grad_grad):

        delta = 1
        eps = self.double_backward_options['eps'] * 2
        xp = chainer.backend.get_array_module(x_data)
        mask = xp.abs(xp.abs(x_data - t_data) - delta) < eps
        x_data[mask] = 0
        t_data[mask] = 0

        def f(x, t):
            return functions.huber_loss(x, t, delta=delta, reduce=self.reduce)

        gradient_check.check_double_backward(
            f, (x_data, t_data), y_grad, (x_grad_grad, t_grad_grad),
            **self.double_backward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:18,代碼來源:test_huber_loss.py

示例3: compute_value_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import huber_loss [as 別名]
def compute_value_loss(y, t, clip_delta=True, batch_accumulator='mean'):
    """Compute a loss for value prediction problem.

    Args:
        y (Variable or ndarray): Predicted values.
        t (Variable or ndarray): Target values.
        clip_delta (bool): Use the Huber loss function if set True.
        batch_accumulator (str): 'mean' or 'sum'. 'mean' will use the mean of
            the loss values in a batch. 'sum' will use the sum.
    Returns:
        (Variable) scalar loss
    """
    assert batch_accumulator in ('mean', 'sum')
    y = F.reshape(y, (-1, 1))
    t = F.reshape(t, (-1, 1))
    if clip_delta:
        loss_sum = F.sum(F.huber_loss(y, t, delta=1.0))
        if batch_accumulator == 'mean':
            loss = loss_sum / y.shape[0]
        elif batch_accumulator == 'sum':
            loss = loss_sum
    else:
        loss_mean = F.mean_squared_error(y, t) / 2
        if batch_accumulator == 'mean':
            loss = loss_mean
        elif batch_accumulator == 'sum':
            loss = loss_mean * y.shape[0]
    return loss 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:30,代碼來源:dqn.py

示例4: compute_weighted_value_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import huber_loss [as 別名]
def compute_weighted_value_loss(y, t, weights,
                                clip_delta=True, batch_accumulator='mean'):
    """Compute a loss for value prediction problem.

    Args:
        y (Variable or ndarray): Predicted values.
        t (Variable or ndarray): Target values.
        weights (ndarray): Weights for y, t.
        clip_delta (bool): Use the Huber loss function if set True.
        batch_accumulator (str): 'mean' will divide loss by batchsize
    Returns:
        (Variable) scalar loss
    """
    assert batch_accumulator in ('mean', 'sum')
    y = F.reshape(y, (-1, 1))
    t = F.reshape(t, (-1, 1))
    if clip_delta:
        losses = F.huber_loss(y, t, delta=1.0)
    else:
        losses = F.square(y - t) / 2
    losses = F.reshape(losses, (-1,))
    loss_sum = F.sum(losses * weights)
    if batch_accumulator == 'mean':
        loss = loss_sum / y.shape[0]
    elif batch_accumulator == 'sum':
        loss = loss_sum
    return loss 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:29,代碼來源:dqn.py

示例5: compute_eltwise_huber_quantile_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import huber_loss [as 別名]
def compute_eltwise_huber_quantile_loss(y, t, taus, huber_loss_threshold=1.0):
    """Compute elementwise Huber losses for quantile regression.

    This is based on Algorithm 1 of https://arxiv.org/abs/1806.06923.

    This function assumes that, both of the two kinds of quantile thresholds,
    taus (used to compute y) and taus_prime (used to compute t) are iid samples
    from U([0,1]).

    Args:
        y (chainer.Variable): Quantile prediction from taus as a
            (batch_size, N)-shaped array.
        t (chainer.Variable or ndarray): Target values for quantile regression
            as a (batch_size, N_prime)-array.
        taus (ndarray): Quantile thresholds used to compute y as a
            (batch_size, N)-shaped array.
        huber_loss_threshold (float): Threshold of Huber loss. In the IQN
            paper, this is denoted by kappa.

    Returns:
        chainer.Variable: Loss (batch_size, N, N_prime)
    """
    assert y.shape == taus.shape
    # (batch_size, N) -> (batch_size, N, 1)
    y = F.expand_dims(y, axis=2)
    # (batch_size, N_prime) -> (batch_size, 1, N_prime)
    t = F.expand_dims(t, axis=1)
    # (batch_size, N) -> (batch_size, N, 1)
    taus = F.expand_dims(taus, axis=2)
    # Broadcast to (batch_size, N, N_prime)
    y, t, taus = F.broadcast(y, t, taus)
    I_delta = ((t.array - y.array) > 0).astype('f')
    eltwise_huber_loss = F.huber_loss(
        y, t, delta=huber_loss_threshold, reduce='no')
    eltwise_loss = abs(taus - I_delta) * eltwise_huber_loss
    return eltwise_loss 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:38,代碼來源:iqn.py

示例6: smooth_l1

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import huber_loss [as 別名]
def smooth_l1(x, t, beta):
    return F.huber_loss(x, t, beta, reduce='no') / beta


# to avoid out of memory 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:7,代碼來源:misc.py

示例7: check_backward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import huber_loss [as 別名]
def check_backward(self, x_data, t_data, y_grad):
        def f(x, t):
            return functions.huber_loss(x, t, delta=1, reduce=self.reduce)

        gradient_check.check_backward(
            f, (x_data, t_data), y_grad, **self.backward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:8,代碼來源:test_huber_loss.py

示例8: check_invalid_option

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import huber_loss [as 別名]
def check_invalid_option(self, xp):
        x = xp.asarray(self.x)
        t = xp.asarray(self.t)
        with self.assertRaises(ValueError):
            functions.huber_loss(x, t, 1, 'invalid_option') 
開發者ID:chainer,項目名稱:chainer,代碼行數:7,代碼來源:test_huber_loss.py

示例9: clear

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import huber_loss [as 別名]
def clear(self):
        self.loss = None
        # self.accuracy = None

#    def forward(self, x, t):
#        self.clear()
#        #x = chainer.Variable(x_data)  # x_data.astype(np.float32)
#        #t = chainer.Variable(t_data)  # [Note]: x_data, t_data must be np.float32 type
#
#        #self.loss = F.huber_loss(h, t, delta= 1 / 255.)
#        self.loss = F.mean_squared_error(self(x), t)
#        # self.accuracy = F.accuracy(h, t)  # type inconpatible
#        return self.loss 
開發者ID:corochann,項目名稱:SeRanet,代碼行數:15,代碼來源:basic_cnn_tail.py

示例10: compute_weighted_value_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import huber_loss [as 別名]
def compute_weighted_value_loss(y, t, weights,
                                mask, clip_delta=True,
                                batch_accumulator='mean'):
    """Compute a loss for value prediction problem.

    Args:
        y (Variable or ndarray): Predicted values.
        t (Variable or ndarray): Target values.
        weights (ndarray): Weights for y, t.
        mask (ndarray): Mask to use for loss calculation
        clip_delta (bool): Use the Huber loss function if set True.
        batch_accumulator (str): 'mean' will divide loss by batchsize
    Returns:
        (Variable) scalar loss
    """
    assert batch_accumulator in ('mean', 'sum')
    y = F.reshape(y, (-1, 1))
    t = F.reshape(t, (-1, 1))
    if clip_delta:
        losses = F.huber_loss(y, t, delta=1.0)
    else:
        losses = F.square(y - t) / 2
    losses = F.reshape(losses, (-1,))
    loss_sum = F.sum(losses * weights * mask)
    if batch_accumulator == 'mean':
        loss = loss_sum / max(n_mask, 1.0)
    elif batch_accumulator == 'sum':
        loss = loss_sum
    return loss 
開發者ID:minerllabs,項目名稱:baselines,代碼行數:31,代碼來源:dqfd.py

示例11: test

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import huber_loss [as 別名]
def test(self):
        batch_size = self.batch_size
        N = self.N
        N_prime = self.N_prime
        huber_loss_threshold = self.huber_loss_threshold

        # Overestimation is penalized proportionally to tau
        # Underestimation is penalized proportionally to (1-tau)
        y = np.random.normal(size=(batch_size, N)).astype('f')
        y_var = chainer.Variable(y)
        t = np.random.normal(size=(batch_size, N_prime)).astype('f')
        tau = np.random.uniform(size=(batch_size, N)).astype('f')

        loss = iqn.compute_eltwise_huber_quantile_loss(
            y_var, t, tau, huber_loss_threshold=huber_loss_threshold)
        y_var_b, t_b = F.broadcast(
            F.reshape(y_var, (batch_size, N, 1)),
            F.reshape(t, (batch_size, 1, N_prime)),
        )
        self.assertEqual(loss.shape, (batch_size, N, N_prime))
        huber_loss = F.huber_loss(
            y_var_b, t_b, delta=huber_loss_threshold, reduce='no')
        self.assertEqual(huber_loss.shape, (batch_size, N, N_prime))

        for i in range(batch_size):
            for j in range(N):
                for k in range(N_prime):
                    # loss is always positive
                    scalar_loss = loss[i, j, k]
                    scalar_grad = chainer.grad(
                        [scalar_loss], [y_var])[0][i, j]
                    self.assertGreater(scalar_loss.array, 0)
                    if y[i, j] > t[i, k]:
                        # y over-estimates t
                        # loss equals huber loss scaled by tau
                        correct_scalar_loss = tau[i, j] * huber_loss[i, j, k]
                    else:
                        # y under-estimates t
                        # loss equals huber loss scaled by (1-tau)
                        correct_scalar_loss = (
                            (1 - tau[i, j]) * huber_loss[i, j, k])
                    correct_scalar_grad = chainer.grad(
                        [correct_scalar_loss], [y_var])[0][i, j]
                    self.assertAlmostEqual(
                        scalar_loss.array,
                        correct_scalar_loss.array,
                        places=5,
                    )
                    self.assertAlmostEqual(
                        scalar_grad.array,
                        correct_scalar_grad.array,
                        places=5,
                    ) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:55,代碼來源:test_iqn.py

示例12: calc_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import huber_loss [as 別名]
def calc_loss(self, image_size, predicted_grids, gt_bbox_points, objectness_scores, normalize=True):
        predicted_bbox_points = self.get_corners(predicted_grids, image_size, scale_to_image_size=False)

        # 1. transform box coordinates to aabb coordinates for determination of iou
        predicted_bbox_points = predicted_bbox_points[0], predicted_bbox_points[4], predicted_bbox_points[3], predicted_bbox_points[7]
        predicted_bbox_points = F.stack(predicted_bbox_points, axis=1)

        # 2. find best prediction area for each gt bbox
        gt_bboxes_to_use_for_loss = []
        positive_anchor_indices = self.xp.empty((0,), dtype=self.xp.int32)
        not_contributing_anchors = self.xp.empty((0,), dtype=self.xp.int32)
        for index, gt_bbox in enumerate(gt_bbox_points):
            # determine which bboxes are positive boxes as they have high iou with gt and also which bboxes are negative
            # this is also used to train objectness classification
            gt_bbox = self.xp.tile(gt_bbox[None, ...], (len(predicted_bbox_points), 1))

            ious = bbox_iou(gt_bbox, predicted_bbox_points.data)
            positive_boxes = self.xp.where((ious[0] >= 0.7))
            not_contributing_boxes = self.xp.where(self.xp.logical_and(0.3 < ious[0], ious[0] < 0.7))
            if len(positive_boxes[0]) == 0:
                best_iou_index = ious[0, :].argmax()
                positive_anchor_indices = self.xp.concatenate((positive_anchor_indices, best_iou_index[None, ...]), axis=0)
                gt_bboxes_to_use_for_loss.append(gt_bbox[0])
            else:
                positive_anchor_indices = self.xp.concatenate((positive_anchor_indices, positive_boxes[0]), axis=0)
                gt_bboxes_to_use_for_loss.extend(gt_bbox[:len(positive_boxes[0])])
            not_contributing_anchors = self.xp.concatenate((not_contributing_anchors, not_contributing_boxes[0]), axis=0)

        if len(gt_bboxes_to_use_for_loss) == 0:
            return Variable(self.xp.array(0, dtype=predicted_grids.dtype))

        gt_bboxes_to_use_for_loss = F.stack(gt_bboxes_to_use_for_loss)

        # filter predicted bboxes and only keep bboxes from those regions that actually contain a bbox
        predicted_bbox_points = F.get_item(predicted_bbox_points, positive_anchor_indices)

        # 3. calculate L1 loss for bbox regression
        loss = F.huber_loss(
            predicted_bbox_points,
            gt_bboxes_to_use_for_loss,
            1
        )

        # 4. calculate objectness loss
        objectness_labels = self.xp.zeros(len(objectness_scores), dtype=self.xp.int32)
        objectness_labels[not_contributing_anchors] = -1
        objectness_labels[positive_anchor_indices] = 1

        objectness_loss = F.softmax_cross_entropy(
            objectness_scores,
            objectness_labels,
            ignore_label=-1,
        )

        return F.mean(loss), objectness_loss 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:57,代碼來源:utils.py


注:本文中的chainer.functions.huber_loss方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。