本文整理匯總了Python中chainer.functions方法的典型用法代碼示例。如果您正苦於以下問題:Python chainer.functions方法的具體用法?Python chainer.functions怎麽用?Python chainer.functions使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer
的用法示例。
在下文中一共展示了chainer.functions方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import functions [as 別名]
def test(self):
a = chainer.Variable(np.random.rand(1).astype(np.float32))
b = chainer.Variable(np.random.rand(1).astype(np.float32))
# No old-style function
y = 2 * a + b
old_style_funcs = trpo._find_old_style_function([y])
self.assertEqual(old_style_funcs, [])
# One old-style function
y = 2 * old_style_identity(a) + b
old_style_funcs = trpo._find_old_style_function([y])
self.assertEqual(len(old_style_funcs), 1)
self.assertTrue(all(isinstance(f, OldStyleIdentity)
for f in old_style_funcs))
# Three old-style functions
y = (2 * old_style_identity(old_style_identity(a))
+ old_style_identity(b))
old_style_funcs = trpo._find_old_style_function([y])
self.assertEqual(len(old_style_funcs), 3)
self.assertTrue(all(isinstance(f, OldStyleIdentity)
for f in old_style_funcs))
示例2: test_second_order
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import functions [as 別名]
def test_second_order(self):
# Second order, so its Hessian will be non-zero
params, y = self._generate_params_and_second_order_output()
old_style_funcs = trpo._find_old_style_function([y])
if old_style_funcs:
self.skipTest("\
Chainer v{} does not support double backprop of these functions: {}.".format(
chainer.__version__, old_style_funcs))
def test_hessian_vector_product_nonzero(vec):
hvp = compute_hessian_vector_product(y, params, vec)
hessian = compute_hessian(y, params)
self.assertGreater(np.count_nonzero(hvp), 0)
self.assertGreater(np.count_nonzero(hessian), 0)
np.testing.assert_allclose(hvp, hessian.dot(vec), atol=1e-3)
# Test with two different random vectors, reusing y
test_hessian_vector_product_nonzero(
np.random.rand(4).astype(np.float32))
test_hessian_vector_product_nonzero(
np.random.rand(4).astype(np.float32))
示例3: _test_call
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import functions [as 別名]
def _test_call(self, gpu):
nonlinearity = getattr(F, self.nonlinearity)
mlp = chainerrl.links.MLPBN(
in_size=self.in_size,
out_size=self.out_size,
hidden_sizes=self.hidden_sizes,
normalize_input=self.normalize_input,
normalize_output=self.normalize_output,
nonlinearity=nonlinearity,
last_wscale=self.last_wscale,
)
batch_size = 7
x = np.random.rand(batch_size, self.in_size).astype(np.float32)
if gpu >= 0:
mlp.to_gpu(gpu)
x = chainer.cuda.to_gpu(x)
y = mlp(x)
self.assertEqual(y.shape, (batch_size, self.out_size))
self.assertEqual(chainer.cuda.get_array_module(y),
chainer.cuda.get_array_module(x))
示例4: accumulate_grad
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import functions [as 別名]
def accumulate_grad(self):
if self.n_backward == 0:
self.model.cleargrads()
# Compute losses
losses = []
for r_seq, log_prob_seq, ent_seq in zip(self.reward_sequences,
self.log_prob_sequences,
self.entropy_sequences):
assert len(r_seq) - 1 == len(log_prob_seq) == len(ent_seq)
# Convert rewards into returns (=sum of future rewards)
R_seq = np.cumsum(list(reversed(r_seq[1:])))[::-1]
for R, log_prob, entropy in zip(R_seq, log_prob_seq, ent_seq):
loss = -R * log_prob - self.beta * entropy
losses.append(loss)
total_loss = chainerrl.functions.sum_arrays(losses)
# When self.batchsize is future.types.newint.newint, dividing a
# Variable with it will raise an error, so it is manually converted to
# float here.
total_loss /= float(self.batchsize)
F.squeeze(total_loss).backward()
self.reward_sequences = [[]]
self.log_prob_sequences = [[]]
self.entropy_sequences = [[]]
self.n_backward += 1
示例5: block_embed
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import functions [as 別名]
def block_embed(embed, x, dropout=0.):
"""Embedding function followed by convolution
Args:
embed (callable): A :func:`~chainer.functions.embed_id` function
or :class:`~chainer.links.EmbedID` link.
x (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \
:class:`cupy.ndarray`): Input variable, which
is a :math:`(B, L)`-shaped int array. Its first dimension
:math:`(B)` is assumed to be the *minibatch dimension*.
The second dimension :math:`(L)` is the length of padded
sentences.
dropout (float): Dropout ratio.
Returns:
~chainer.Variable: Output variable. A float array with shape
of :math:`(B, N, L, 1)`. :math:`(N)` is the number of dimensions
of word embedding.
"""
e = embed(x)
e = F.dropout(e, ratio=dropout)
e = F.transpose(e, (0, 2, 1))
e = e[:, :, :, None]
return e
示例6: vcall
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import functions [as 別名]
def vcall(self, module: 'values.Field', graph: 'graphs.Graph', inst: 'values.Object', args: 'functions.FunctionArgInput',
option: 'vevaluator.VEvalContext' = None, line=-1):
funcArgs = self.args.merge_inputs(inst, args)
if inst.in_container:
raise Exception('Invalid operation')
keys = inst.get_value().internal_keys.values()
vargs = []
vargs_value = []
for varg in keys:
vargs.append(utils.try_get_obj(varg, 'dict_keys', utils.LineProperty()))
vargs_value.append(utils.try_get_obj(varg, 'dict_keys', utils.LineProperty()).get_value())
node = nodes.NodeGenerate('List', vargs_value , line)
graph.add_node(node)
value = values.ListValue(vargs)
value.name = '@F.{}.{}'.format(line, self.name)
node.set_outputs([value])
return value
示例7: veval_ast_bool_op
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import functions [as 別名]
def veval_ast_bool_op(astc : 'AstContext', local_field : 'values.Field', graph : 'graphs.Graph', context : 'functions.VEvalContext' = None):
"""
eval bool operations.
Ex. x and y
"""
assert(isinstance(astc.nast, gast.gast.BoolOp))
lineprop = utils.LineProperty(astc.lineno, astc.filename)
multiaryop = nodes.MultiaryOpType.Unknown
if isinstance(astc.nast.op, gast.And):
multiaryop = nodes.MultiaryOpType.And
if isinstance(astc.nast.op, gast.Or):
multiaryop = nodes.MultiaryOpType.Or
values_list = [veval_ast(astc.c(value_), local_field, graph, context) for value_ in astc.nast.values]
values_list_value = [utils.try_get_value(value_, 'multiary', lineprop) for value_ in values_list]
node = nodes.NodeMultiaryOp(values_list_value, multiaryop)
ret_value = veval_multiary.veval(multiaryop, values_list_value)
node.set_outputs([ret_value])
graph.add_node(node)
return values.Object(ret_value)
示例8: veval_ast_name_constant
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import functions [as 別名]
def veval_ast_name_constant(astc : 'AstContext', local_field : 'values.Field', graph : 'Graph', context : 'functions.VEvalContext' = None):
'''
Ex. True
'''
assert(isinstance(astc.nast, gast.gast.Constant))
lineprop = utils.LineProperty(astc.lineno, astc.filename)
ret = None
if astc.nast.value == True:
ret = values.Object(values.BoolValue(True))
elif astc.nast.value == False:
ret = values.Object(values.BoolValue(False))
elif astc.nast.value is None:
ret = values.Object(values.NoneValue())
else:
print("Invalid name constant: {}".format(astc.nast.value))
assert False
name = values.create_ref_value_name_with_constant(ret)
ret.name = name
ret.get_value().name = name
return ret
示例9: veval_ast_list
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import functions [as 別名]
def veval_ast_list(astc : 'AstContext', local_field : 'values.Field', graph : 'Graph', context : 'functions.VEvalContext' = None):
assert(isinstance(astc.nast, gast.gast.List))
'''
Ex. [],[x,y,z]
TODO : Initializer
'''
lineprop = utils.LineProperty(astc.lineno, astc.filename)
elts = []
for elt in astc.nast.elts:
elt_ = veval_ast(astc.c(elt), local_field, graph, context)
elt_obj = utils.try_get_obj(elt_,'list', lineprop)
elts.append(elt_obj)
node = nodes.NodeGenerate('List', [elt.get_value() for elt in elts], lineprop)
graph.add_node(node)
value = values.ListValue(elts)
node.set_outputs([value])
return values.Object(value)
示例10: veval_ast_dict
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import functions [as 別名]
def veval_ast_dict(astc : 'AstContext', local_field : 'values.Field', graph : 'Graph', context : 'functions.VEvalContext' = None):
assert(isinstance(astc.nast, gast.gast.Dict))
lineprop = utils.LineProperty(astc.lineno, astc.filename)
keys = []
elts = []
for key, elt in zip(astc.nast.keys, astc.nast.values):
key_ = veval_ast(astc.c(key), local_field, graph, context)
elt_ = veval_ast(astc.c(elt), local_field, graph, context)
key_obj = utils.try_get_obj(key_, 'dict', lineprop)
elt_obj = utils.try_get_obj(elt_,'dict', lineprop)
keys.append(key_obj)
elts.append(return_value_or_obj(elt_obj))
value = values.DictValue(keys, elts)
return values.Object(value)
示例11: vcall
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import functions [as 別名]
def vcall(self, module: 'values.Field', graph: 'graphs.Graph', inst: 'values.Object', args: 'functions.FunctionArgInput',
context: 'functions.VEvalContext' = None, line=-1):
funcArgs = self.args.merge_inputs(inst, args)
node = nodes.NodeCall(self, funcArgs, line)
graph.add_node(node)
axis = funcArgs.keywords['axis']
if isinstance(axis, values.NoneValue):
value = values.NumberValue(None)
value.dtype = np.int32
else:
value = values.TensorValue()
value.dtype = np.int32
value.name = '@F.{}.{}'.format(line, self.name)
node.set_outputs([value])
return values.Object(value)
示例12: forward
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import functions [as 別名]
def forward(self, x, layers=None, **kwargs):
if layers is None:
layers = ['prob']
if kwargs:
argument.check_unexpected_kwargs(
kwargs, test='test argument is not supported anymore. '
'Use chainer.using_config'
)
argument.assert_kwargs_empty(kwargs)
h = x
activations = {}
target_layers = set(layers)
for key, funcs in self.functions.items():
if len(target_layers) == 0:
break
for func in funcs:
h = func(h)
if key in target_layers:
activations[key] = h
target_layers.remove(key)
return activations
示例13: test_first_order
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import functions [as 別名]
def test_first_order(self):
# First order, so its Hessian will contain None
params, y = self._generate_params_and_first_order_output()
old_style_funcs = trpo._find_old_style_function([y])
if old_style_funcs:
self.skipTest("\
Chainer v{} does not support double backprop of these functions: {}.".format(
chainer.__version__, old_style_funcs))
vec = np.random.rand(4).astype(np.float32)
# Hessian-vector product computation should raise an error due to None
with self.assertRaises(AssertionError):
compute_hessian_vector_product(y, params, vec)
示例14: _test_call
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import functions [as 別名]
def _test_call(self, gpu):
nonlinearity = getattr(F, self.nonlinearity)
model = chainerrl.q_functions.FCSAQFunction(
n_dim_obs=self.n_dim_obs,
n_dim_action=self.n_dim_action,
n_hidden_layers=self.n_hidden_layers,
n_hidden_channels=self.n_hidden_channels,
nonlinearity=nonlinearity,
last_wscale=self.last_wscale,
)
self._test_call_given_model(model, gpu)
示例15: _test_call
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import functions [as 別名]
def _test_call(self, gpu):
# This method only check if a given model can receive random input
# data and return output data with the correct interface.
nonlinearity = getattr(F, self.nonlinearity)
min_action = np.full((self.action_size,), -0.01, dtype=np.float32)
max_action = np.full((self.action_size,), 0.01, dtype=np.float32)
model = self._make_model(
n_input_channels=self.n_input_channels,
action_size=self.action_size,
bound_action=self.bound_action,
min_action=min_action,
max_action=max_action,
nonlinearity=nonlinearity,
)
batch_size = 7
x = np.random.rand(
batch_size, self.n_input_channels).astype(np.float32)
if gpu >= 0:
model.to_gpu(gpu)
x = chainer.cuda.to_gpu(x)
min_action = chainer.cuda.to_gpu(min_action)
max_action = chainer.cuda.to_gpu(max_action)
y = model(x)
self.assertTrue(isinstance(
y, chainerrl.distribution.ContinuousDeterministicDistribution))
a = y.sample()
self.assertTrue(isinstance(a, chainer.Variable))
self.assertEqual(a.shape, (batch_size, self.action_size))
self.assertEqual(chainer.cuda.get_array_module(a),
chainer.cuda.get_array_module(x))
if self.bound_action:
self.assertTrue((a.array <= max_action).all())
self.assertTrue((a.array >= min_action).all())