當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.gaussian方法代碼示例

本文整理匯總了Python中chainer.functions.gaussian方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.gaussian方法的具體用法?Python functions.gaussian怎麽用?Python functions.gaussian使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.gaussian方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: generate_image

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import gaussian [as 別名]
def generate_image(self, v, r):
        xp = cuda.get_array_module(v)

        batch_size = v.shape[0]
        h_t_gen, c_t_gen, u_t, _, _ = self.generate_initial_state(
            batch_size, xp)
        v = cf.reshape(v, v.shape[:2] + (1, 1))

        for t in range(self.num_layers):
            generation_core = self.get_generation_core(t)

            mean_z_p, ln_var_z_p = self.z_prior_distribution.compute_parameter(
                h_t_gen)
            z_t = cf.gaussian(mean_z_p, ln_var_z_p)

            h_next_gen, c_next_gen, u_next = generation_core(
                h_t_gen, c_t_gen, z_t, v, r, u_t)

            u_t = u_next
            h_t_gen = h_next_gen
            c_t_gen = c_next_gen

        mean_x = self.map_u_x(u_t)
        return mean_x.data 
開發者ID:musyoku,項目名稱:chainer-gqn,代碼行數:26,代碼來源:model.py

示例2: get_loss_func

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import gaussian [as 別名]
def get_loss_func(self, C=1.0, k=1):
        """Get loss function of VAE.

        The loss value is equal to ELBO (Evidence Lower Bound)
        multiplied by -1.

        Args:
            C (int): Usually this is 1.0. Can be changed to control the
                second term of ELBO bound, which works as regularization.
            k (int): Number of Monte Carlo samples used in encoded vector.
        """
        def lf(x):
            mu, ln_var = self.encode(x)
            batchsize = len(mu.data)
            # reconstruction loss
            rec_loss = 0
            for l in six.moves.range(k):
                z = F.gaussian(mu, ln_var)
                rec_loss += F.bernoulli_nll(x, self.decode(z, sigmoid=False)) \
                    / (k * batchsize)
            self.rec_loss = rec_loss
            self.loss = self.rec_loss + \
                C * gaussian_kl_divergence(mu, ln_var) / batchsize
            return self.loss
        return lf 
開發者ID:lanpa,項目名稱:tensorboardX,代碼行數:27,代碼來源:net.py

示例3: test_forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import gaussian [as 別名]
def test_forward(self, backend_config):
        m_data, v_data = backend_config.get_array((self.m, self.v))

        m = chainer.Variable(m_data)
        v = chainer.Variable(v_data)

        # Call forward without eps and retrieve it
        n1, eps = functions.gaussian(m, v, return_eps=True)

        self.assertIsInstance(eps, backend_config.xp.ndarray)
        self.assertEqual(n1.dtype, self.dtype)
        self.assertEqual(n1.shape, m.shape)
        self.assertEqual(eps.dtype, self.dtype)
        self.assertEqual(eps.shape, m.shape)

        # Call again with retrieved eps
        n2 = functions.gaussian(m, v, eps=eps)
        self.assertEqual(n2.dtype, self.dtype)
        self.assertEqual(n2.shape, m.shape)
        testing.assert_allclose(n1.array, n2.array) 
開發者ID:chainer,項目名稱:chainer,代碼行數:22,代碼來源:test_gaussian.py

示例4: test_double_backward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import gaussian [as 別名]
def test_double_backward(self, backend_config):
        m_data, v_data = backend_config.get_array((self.m, self.v))
        y_grad = backend_config.get_array(self.gy)
        m_grad_grad, v_grad_grad = (
            backend_config.get_array((self.ggm, self.ggv)))
        eps = backend_config.get_array(
            numpy.random.uniform(-1, 1, self.shape).astype(self.dtype))

        def f(m, v):
            # In case numerical gradient computation is held in more precise
            # dtype than that of backward computation, cast the eps to reuse
            # before the numerical computation.
            eps_ = eps.astype(m.dtype)
            return functions.gaussian(m, v, eps=eps_)

        gradient_check.check_double_backward(
            f, (m_data, v_data), y_grad, (m_grad_grad, v_grad_grad),
            **self.check_double_backward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:test_gaussian.py

示例5: sample

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import gaussian [as 別名]
def sample(self, h):
        mean, ln_var = self.compute_parameter(h)
        return cf.gaussian(mean, ln_var) 
開發者ID:musyoku,項目名稱:chainer-gqn,代碼行數:5,代碼來源:model.py

示例6: sample_z_and_x_params_from_posterior

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import gaussian [as 別名]
def sample_z_and_x_params_from_posterior(self, x, v, r):
        batch_size = x.shape[0]
        xp = cuda.get_array_module(x)

        h_t_gen, c_t_gen, u_t, h_t_enc, c_t_enc = self.generate_initial_state(
            batch_size, xp)
        v = cf.reshape(v, v.shape + (1, 1))

        z_t_params_array = []

        for t in range(self.num_layers):
            inference_core = self.get_inference_core(t)
            generation_core = self.get_generation_core(t)

            h_next_enc, c_next_enc = inference_core(h_t_gen, h_t_enc, c_t_enc,
                                                    x, v, r, u_t)

            mean_z_q, ln_var_z_q = self.z_posterior_distribution.compute_parameter(
                h_t_enc)
            z_t = cf.gaussian(mean_z_q, ln_var_z_q)

            mean_z_p, ln_var_z_p = self.z_prior_distribution.compute_parameter(
                h_t_gen)

            h_next_gen, c_next_gen, u_next = generation_core(
                h_t_gen, c_t_gen, z_t, v, r, u_t)

            z_t_params_array.append((mean_z_q, ln_var_z_q, mean_z_p,
                                     ln_var_z_p))

            u_t = u_next
            h_t_gen = h_next_gen
            c_t_gen = c_next_gen
            h_t_enc = h_next_enc
            c_t_enc = c_next_enc

        mean_x = self.map_u_x(u_t)
        return z_t_params_array, mean_x 
開發者ID:musyoku,項目名稱:chainer-gqn,代碼行數:40,代碼來源:model.py

示例7: generate_canvas_states

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import gaussian [as 別名]
def generate_canvas_states(self, v, r, xp):
        batch_size = v.shape[0]
        h_t_gen, c_t_gen, u_t, _, _ = self.generate_initial_state(
            batch_size, xp)

        v = cf.reshape(v, v.shape[:2] + (1, 1))

        u_t_array = []

        for t in range(self.num_layers):
            generation_core = self.get_generation_core(t)

            mean_z_p, ln_var_z_p = self.z_prior_distribution.compute_parameter(
                h_t_gen)
            z_t = cf.gaussian(mean_z_p, ln_var_z_p)

            h_next_gen, c_next_gen, u_next = generation_core(
                h_t_gen, c_t_gen, z_t, v, r, u_t)

            u_t = u_next
            h_t_gen = h_next_gen
            c_t_gen = c_next_gen

            u_t_array.append(u_t)

        return u_t_array 
開發者ID:musyoku,項目名稱:chainer-gqn,代碼行數:28,代碼來源:model.py

示例8: sample

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import gaussian [as 別名]
def sample(self):
        return F.gaussian(self.mean, self.ln_var) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:4,代碼來源:distribution.py

示例9: sample_with_log_prob

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import gaussian [as 別名]
def sample_with_log_prob(self):
        x = F.gaussian(self.mean, self.ln_var)
        normal_log_prob = _eltwise_gaussian_log_likelihood(
            x, self.mean, self.var, self.ln_var)
        log_probs = normal_log_prob - _tanh_forward_log_det_jacobian(x)
        y = F.tanh(x)
        return y, F.sum(log_probs, axis=1) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:9,代碼來源:distribution.py

示例10: advance_one_step

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import gaussian [as 別名]
def advance_one_step(self, previous_states, prev_y):

        if self.noise_on_prev_word:
            current_mb_size = prev_y.data.shape[0]
            assert self.mb_size is None or current_mb_size <= self.mb_size
            prev_y = prev_y * F.gaussian(Variable(self.noise_mean[:current_mb_size]),
                                         Variable(self.noise_lnvar[:current_mb_size]))

        new_states, concatenated, attn = self.advance_state(previous_states, prev_y)

        logits = self.compute_logits(new_states, concatenated, attn)

        return new_states, logits, attn 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:15,代碼來源:decoder_cells.py

示例11: test_backward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import gaussian [as 別名]
def test_backward(self, backend_config):
        m_data, v_data = backend_config.get_array((self.m, self.v))
        y_grad = backend_config.get_array(self.gy)
        eps = backend_config.get_array(
            numpy.random.uniform(-1, 1, self.shape).astype(self.dtype))

        def f(m, v):
            # In case numerical gradient computation is held in more precise
            # dtype than that of backward computation, cast the eps to reuse
            # before the numerical computation.
            eps_ = eps.astype(m.dtype)
            return functions.gaussian(m, v, eps=eps_)

        gradient_check.check_backward(
            f, (m_data, v_data), y_grad, **self.check_backward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:17,代碼來源:test_gaussian.py

示例12: encode

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import gaussian [as 別名]
def encode(self, bow):
        """ Convert the bag of words vector of shape (n_docs, n_vocab)
        into latent mean log variance vectors.
        """
        lam = F.relu(self.l1(bow))
        pi = F.relu(self.l2(lam))
        mu, log_sigma = F.split_axis(self.mu_logsigma(pi), 2, 1)
        sample = F.gaussian(mu, log_sigma)
        loss = F.gaussian_kl_divergence(mu, log_sigma)
        return sample, loss 
開發者ID:cemoody,項目名稱:lda2vec,代碼行數:12,代碼來源:nvdm.py

示例13: sample

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import gaussian [as 別名]
def sample(self, x):
        pi, mu, log_var = self.get_gaussian_params(x)
        n_batch = pi.shape[0]

        # Choose one of Gaussian means and vars n_batch times
        ps = chainer.backends.cuda.to_cpu(pi.array)
        idx = [np.random.choice(self.gaussian_mixtures, p=p) for p in ps]
        mu = F.get_item(mu, [range(n_batch), idx])
        log_var = F.get_item(log_var, [range(n_batch), idx])

        # Sampling
        z = F.gaussian(mu, log_var)

        return z 
開發者ID:chainer,項目名稱:models,代碼行數:16,代碼來源:mdn.py

示例14: get_inference_posterior

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import gaussian [as 別名]
def get_inference_posterior(self, t):
        if self.hyperparams.inference_share_posterior:
            return self.inference_posteriors[0]
        return self.inference_posteriors[t]

    # def compute_information_gain(self, x, r):
    #     xp = cuda
    #     h0_gen, c0_gen, u_0, h0_enc, c0_enc = self.generate_initial_state(
    #         1, xp)
    #     loss_kld = 0

    #     hl_enc = h0_enc
    #     cl_enc = c0_enc
    #     hl_gen = h0_gen
    #     cl_gen = c0_gen
    #     ul_enc = u_0

    #     xq = self.inference_downsampler(x)

    #     for l in range(self.num_layers):
    #         inference_core = self.get_inference_core(l)
    #         inference_posterior = self.get_inference_posterior(l)
    #         generation_core = self.get_generation_core(l)
    #         generation_piror = self.get_generation_prior(l)

    #         h_next_enc, c_next_enc = inference_core.forward_onestep(
    #             hl_gen, hl_enc, cl_enc, xq, v, r)

    #         mean_z_q = inference_posterior.compute_mean_z(hl_enc)
    #         ln_var_z_q = inference_posterior.compute_ln_var_z(hl_enc)
    #         ze_l = cf.gaussian(mean_z_q, ln_var_z_q)

    #         mean_z_p = generation_piror.compute_mean_z(hl_gen)
    #         ln_var_z_p = generation_piror.compute_ln_var_z(hl_gen)

    #         h_next_gen, c_next_gen, u_next_enc = generation_core.forward_onestep(
    #             hl_gen, cl_gen, ul_enc, ze_l, v, r)

    #         kld = gqn.nn.functions.gaussian_kl_divergence(
    #             mean_z_q, ln_var_z_q, mean_z_p, ln_var_z_p)

    #         loss_kld += cf.sum(kld)

    #         hl_gen = h_next_gen
    #         cl_gen = c_next_gen
    #         ul_enc = u_next_enc
    #         hl_enc = h_next_enc
    #         cl_enc = c_next_enc 
開發者ID:musyoku,項目名稱:chainer-gqn,代碼行數:50,代碼來源:model.py


注:本文中的chainer.functions.gaussian方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。