當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.flatten方法代碼示例

本文整理匯總了Python中chainer.functions.flatten方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.flatten方法的具體用法?Python functions.flatten怎麽用?Python functions.flatten使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.flatten方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import flatten [as 別名]
def __call__(self, x, alpha=1.0):
        if self.depth > 0 and alpha < 1:
            h1 = self['b%d'%(7-self.depth)](x, True)
            x2 = F.average_pooling_2d(x, 2, 2)
            h2 = F.leaky_relu(self['b%d'%(7-self.depth+1)].fromRGB(x2))
            h = h2 * (1 - alpha) + h1 * alpha
        else:
            h = self['b%d'%(7-self.depth)](x, True)
                
        for i in range(self.depth):
            h = self['b%d'%(7-self.depth+1+i)](h)

        h = self.l(h)
        h = F.flatten(h)

        return h 
開發者ID:joisino,項目名稱:chainer-PGGAN,代碼行數:18,代碼來源:network.py

示例2: update_q_func

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import flatten [as 別名]
def update_q_func(self, batch):
        """Compute loss for a given Q-function."""

        batch_next_state = batch['next_state']
        batch_rewards = batch['reward']
        batch_terminal = batch['is_state_terminal']
        batch_state = batch['state']
        batch_actions = batch['action']
        batch_discount = batch['discount']

        with chainer.no_backprop_mode(), chainer.using_config('train', False):
            next_action_distrib = self.policy(batch_next_state)
            next_actions, next_log_prob =\
                next_action_distrib.sample_with_log_prob()
            next_q1 = self.target_q_func1(batch_next_state, next_actions)
            next_q2 = self.target_q_func2(batch_next_state, next_actions)
            next_q = F.minimum(next_q1, next_q2)
            entropy_term = self.temperature * next_log_prob[..., None]
            assert next_q.shape == entropy_term.shape

            target_q = batch_rewards + batch_discount * \
                (1.0 - batch_terminal) * F.flatten(next_q - entropy_term)

        predict_q1 = F.flatten(self.q_func1(batch_state, batch_actions))
        predict_q2 = F.flatten(self.q_func2(batch_state, batch_actions))

        loss1 = 0.5 * F.mean_squared_error(target_q, predict_q1)
        loss2 = 0.5 * F.mean_squared_error(target_q, predict_q2)

        # Update stats
        self.q1_record.extend(cuda.to_cpu(predict_q1.array))
        self.q2_record.extend(cuda.to_cpu(predict_q2.array))
        self.q_func1_loss_record.append(float(loss1.array))
        self.q_func2_loss_record.append(float(loss2.array))

        self.q_func1_optimizer.update(lambda: loss1)
        self.q_func2_optimizer.update(lambda: loss2) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:39,代碼來源:soft_actor_critic.py

示例3: update_q_func

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import flatten [as 別名]
def update_q_func(self, batch):
        """Compute loss for a given Q-function."""

        batch_next_state = batch['next_state']
        batch_rewards = batch['reward']
        batch_terminal = batch['is_state_terminal']
        batch_state = batch['state']
        batch_actions = batch['action']
        batch_discount = batch['discount']

        with chainer.no_backprop_mode(), chainer.using_config('train', False):
            next_actions = self.target_policy_smoothing_func(
                self.target_policy(batch_next_state).sample().array)
            next_q1 = self.target_q_func1(batch_next_state, next_actions)
            next_q2 = self.target_q_func2(batch_next_state, next_actions)
            next_q = F.minimum(next_q1, next_q2)

            target_q = batch_rewards + batch_discount * \
                (1.0 - batch_terminal) * F.flatten(next_q)

        predict_q1 = F.flatten(self.q_func1(batch_state, batch_actions))
        predict_q2 = F.flatten(self.q_func2(batch_state, batch_actions))

        loss1 = F.mean_squared_error(target_q, predict_q1)
        loss2 = F.mean_squared_error(target_q, predict_q2)

        # Update stats
        self.q1_record.extend(cuda.to_cpu(predict_q1.array))
        self.q2_record.extend(cuda.to_cpu(predict_q2.array))
        self.q_func1_loss_record.append(float(loss1.array))
        self.q_func2_loss_record.append(float(loss2.array))

        self.q_func1_optimizer.update(lambda: loss1)
        self.q_func2_optimizer.update(lambda: loss2) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:36,代碼來源:td3.py

示例4: _flatten_and_concat_variables

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import flatten [as 別名]
def _flatten_and_concat_variables(vs):
    """Flatten and concat variables to make a single flat vector variable."""
    return F.concat([F.flatten(v) for v in vs], axis=0) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:5,代碼來源:trpo.py

示例5: _compute_ppo_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import flatten [as 別名]
def _compute_ppo_loss(self, obs, acts, at, vt, old_params):
        params = self._pi_f(obs)
        cv = F.flatten(self._vf_f(obs))
        ratio = F.exp(self._logp(params, acts) - self._logp(old_params, acts))
        surr1 = ratio * at
        surr2 = F.clip(ratio, 1 - self._ppo_clipparam, 1 + self._ppo_clipparam) * at
        ppo_surr_loss = (
                -sym_mean(F.minimum(surr1, surr2))
                + self._ppo_klcoeff * sym_mean(self.kl(old_params, params))
                + sym_mean(F.square(cv - vt))
        )
        return ppo_surr_loss 
開發者ID:openai,項目名稱:EPG,代碼行數:14,代碼來源:agents.py

示例6: forward_expected

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import flatten [as 別名]
def forward_expected(self, inputs):
        x, = inputs
        return x.flatten(), 
開發者ID:chainer,項目名稱:chainer,代碼行數:5,代碼來源:test_flatten.py

示例7: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import flatten [as 別名]
def forward(self, inputs, device):
        x, = inputs
        y = functions.flatten(x)
        return y, 
開發者ID:chainer,項目名稱:chainer,代碼行數:6,代碼來源:test_flatten.py

示例8: _elementwise_softmax_cross_entropy

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import flatten [as 別名]
def _elementwise_softmax_cross_entropy(x, t):
    assert x.shape[:-1] == t.shape
    shape = t.shape
    x = F.reshape(x, (-1, x.shape[-1]))
    t = F.flatten(t)
    return F.reshape(
        F.softmax_cross_entropy(x, t, reduce='no'), shape) 
開發者ID:chainer,項目名稱:chainercv,代碼行數:9,代碼來源:multibox_loss.py


注:本文中的chainer.functions.flatten方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。