本文整理匯總了Python中chainer.functions.expand_dims方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.expand_dims方法的具體用法?Python functions.expand_dims怎麽用?Python functions.expand_dims使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.functions
的用法示例。
在下文中一共展示了functions.expand_dims方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import expand_dims [as 別名]
def __call__(self, state):
h = state
for layer in self.hidden_layers:
h = F.relu(layer(h))
v = self.v(h)
mu = self.mu(h)
if self.scale_mu:
mu = scale_by_tanh(mu, high=self.action_space.high,
low=self.action_space.low)
mat_diag = F.exp(self.mat_diag(h))
if hasattr(self, 'mat_non_diag'):
mat_non_diag = self.mat_non_diag(h)
tril = lower_triangular_matrix(mat_diag, mat_non_diag)
mat = F.matmul(tril, tril, transb=True)
else:
mat = F.expand_dims(mat_diag ** 2, axis=2)
return QuadraticActionValue(
mu, mat, v, min_action=self.action_space.low,
max_action=self.action_space.high)
示例2: _evaluate_psi_x_with_quantile_thresholds
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import expand_dims [as 別名]
def _evaluate_psi_x_with_quantile_thresholds(psi_x, phi, f, taus):
assert psi_x.ndim == 2
batch_size, hidden_size = psi_x.shape
assert taus.ndim == 2
assert taus.shape[0] == batch_size
n_taus = taus.shape[1]
phi_taus = phi(taus)
assert phi_taus.ndim == 3
assert phi_taus.shape == (batch_size, n_taus, hidden_size)
psi_x_b = F.broadcast_to(
F.expand_dims(psi_x, axis=1), phi_taus.shape)
h = psi_x_b * phi_taus
h = F.reshape(h, (-1, hidden_size))
assert h.shape == (batch_size * n_taus, hidden_size)
h = f(h)
assert h.ndim == 2
assert h.shape[0] == batch_size * n_taus
n_actions = h.shape[-1]
h = F.reshape(h, (batch_size, n_taus, n_actions))
return QuantileDiscreteActionValue(h)
示例3: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import expand_dims [as 別名]
def __call__(self, x):
y = self.branches(x)
u = F.sum(y, axis=1)
s = F.average_pooling_2d(u, ksize=u.shape[2:])
z = self.fc1(s)
w = self.fc2(z)
batch = w.shape[0]
w = F.reshape(w, shape=(batch, self.num_branches, self.out_channels))
w = self.softmax(w)
w = F.expand_dims(F.expand_dims(w, axis=3), axis=4)
y = y * w
y = F.sum(y, axis=1)
return y
示例4: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import expand_dims [as 別名]
def __call__(self, x):
heatmap = x
vector_dim = 2
batch = heatmap.shape[0]
channels = heatmap.shape[1]
in_size = x.shape[2:]
heatmap_vector = F.reshape(heatmap, shape=(batch, channels, -1))
indices = F.cast(F.expand_dims(F.argmax(heatmap_vector, axis=vector_dim), axis=vector_dim), np.float32)
scores = F.max(heatmap_vector, axis=vector_dim, keepdims=True)
scores_mask = (scores.array > 0.0).astype(np.float32)
pts_x = (indices.array % in_size[1]) * scores_mask
pts_y = (indices.array // in_size[1]) * scores_mask
pts = F.concat((pts_x, pts_y, scores), axis=vector_dim).array
for b in range(batch):
for k in range(channels):
hm = heatmap[b, k, :, :].array
px = int(pts_x[b, k])
py = int(pts_y[b, k])
if (0 < px < in_size[1] - 1) and (0 < py < in_size[0] - 1):
pts[b, k, 0] += np.sign(hm[py, px + 1] - hm[py, px - 1]) * 0.25
pts[b, k, 1] += np.sign(hm[py + 1, px] - hm[py - 1, px]) * 0.25
return pts
示例5: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import expand_dims [as 別名]
def __call__(self, inputs):
pos_x, pos_y, offset_x, ego_x, ego_y, pose_x, pose_y = self._prepare_input(inputs)
batch_size, past_len, _ = pos_x.shape
h_pos = self.pos_encoder(pos_x)
h_ego = self.ego_encoder(ego_x)
h = F.concat((h_pos, h_ego), axis=1) # (B, C, 2)
h = self.inter(h)
h_pos = self.pos_decoder(h)
pred_y = self.last(h_pos) # (B, 10, C+6+28)
pred_y = F.swapaxes(pred_y, 1, 2)
pred_y = pred_y[:, :pos_y.shape[1], :]
loss = F.mean_squared_error(pred_y, pos_y)
pred_y = pred_y + F.broadcast_to(F.expand_dims(offset_x, 1), pred_y.shape)
pred_y = cuda.to_cpu(pred_y.data) * self._std + self._mean
return loss, pred_y, None
示例6: process_trajectory
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import expand_dims [as 別名]
def process_trajectory(self, l):
"""This is the time-dependent convolution operation, applied to a trajectory (in order).
"""
shp = l.shape[0]
# First dim is batchsize=1, then either 1 channel for 2d conv or n_feat channels
# for 1d conv.
l = F.expand_dims(l, axis=0)
l = F.transpose(l, (0, 2, 1))
l = self.traj_c0(l)
l = F.leaky_relu(l)
l = self.traj_c1(l)
l = F.leaky_relu(l)
l = F.sum(l, axis=(0, 2)) / l.shape[0] / l.shape[2]
l = F.expand_dims(l, axis=0)
l = self.traj_d0(l)
l = F.tile(l, (shp, 1))
return l
示例7: calc_loss
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import expand_dims [as 別名]
def calc_loss(self, x, t):
batch_predictions, _, _ = x
# concat all individual predictions and slice for each time step
batch_predictions = F.concat([F.expand_dims(p, axis=0) for p in batch_predictions], axis=0)
self.xp = cuda.get_array_module(batch_predictions[0], t)
batch_size = t.shape[0]
t = F.reshape(t, (batch_size, self.num_timesteps, -1))
losses = []
for predictions, labels in zip(F.separate(batch_predictions, axis=0), F.separate(t, axis=1)):
batch_size, num_chars, num_classes = predictions.shape
predictions = F.reshape(predictions, (batch_size * num_chars, num_classes))
labels = F.reshape(labels, (-1,))
losses.append(F.softmax_cross_entropy(predictions, labels))
return sum(losses)
示例8: attend
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import expand_dims [as 別名]
def attend(self, encoded_features):
self.out_lstm.reset_state()
transformed_encoded_features = F.concat([F.expand_dims(self.transform_encoded_features(feature), axis=1) for feature in encoded_features], axis=1)
concat_encoded_features = F.concat([F.expand_dims(e, axis=1) for e in encoded_features], axis=1)
lstm_output = self.xp.zeros_like(encoded_features[0])
outputs = []
for _ in range(self.num_labels):
transformed_lstm_output = self.transform_out_lstm_feature(lstm_output)
attended_feats = []
for transformed_encoded_feature in F.separate(transformed_encoded_features, axis=1):
attended_feat = transformed_encoded_feature + transformed_lstm_output
attended_feat = F.tanh(attended_feat)
attended_feats.append(self.generate_attended_feat(attended_feat))
attended_feats = F.concat(attended_feats, axis=1)
alphas = F.softmax(attended_feats, axis=1)
lstm_input_feature = F.batch_matmul(alphas, concat_encoded_features, transa=True)
lstm_input_feature = F.squeeze(lstm_input_feature, axis=1)
lstm_output = self.out_lstm(lstm_input_feature)
outputs.append(lstm_output)
return outputs
示例9: decode_predictions
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import expand_dims [as 別名]
def decode_predictions(self, predictions):
# concat all individual predictions and slice for each time step
predictions = F.concat([F.expand_dims(p, axis=0) for p in predictions], axis=0)
words = []
with cuda.get_device_from_array(predictions.data):
for prediction in F.separate(predictions, axis=0):
prediction = F.squeeze(prediction, axis=0)
prediction = F.softmax(prediction, axis=1)
prediction = self.xp.argmax(prediction.data, axis=1)
word = self.loss_metrics.strip_prediction(prediction[self.xp.newaxis, ...])[0]
if len(word) == 1 and word[0] == 0:
return ''
word = "".join(map(self.loss_metrics.label_to_char, word))
word = word.replace(chr(self.loss_metrics.char_map[str(self.loss_metrics.blank_symbol)]), '')
words.append(word)
text = " ".join(words)
return text
示例10: predict
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import expand_dims [as 別名]
def predict(self, images, return_raw_classification_result=False):
feature_map = self.extract_features(images)
memory = self.transformer.encode(feature_map, None)
target = self.get_bos_token_array(len(images), self.num_words)
target = self.xp.reshape(target, (-1, 1))
char = None
for _ in range(self.num_chars):
decoded = self.transformer.decode(memory, None, target, self.mask)
char = self.classifier(decoded, n_batch_axes=2)
predicted_chars = self.decode_prediction(char)
target = F.concat([target, predicted_chars[:, -1:]])
result = F.expand_dims(target[:, 1:], 1)
if return_raw_classification_result:
return result, char
return result
示例11: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import expand_dims [as 別名]
def __call__(self, v, h, label):
v_t = self.vertical_conv_t(v)
v_s = self.vertical_conv_s(v)
to_vertical_t = self.v_to_h_conv_t(v_t)
to_vertical_s = self.v_to_h_conv_s(v_s)
# v_gate = self.vertical_gate_conv(v)
# label bias is added to both vertical and horizontal conv
# here we take only shape as it should be the same
label = F.broadcast_to(F.expand_dims(F.expand_dims(self.label(label), -1), -1), v_t.shape)
v_t, v_s = v_t + label, v_s + label
v = F.tanh(v_t) * F.sigmoid(v_s)
h_t = self.horizontal_conv_t(h)
h_s = self.horizontal_conv_s(h)
h_t, h_s = h_t + to_vertical_t + label, h_s + to_vertical_s + label
h = self.horizontal_output(F.tanh(h_t) * F.sigmoid(h_s))
return v, h
示例12: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import expand_dims [as 別名]
def __call__(self, g, n_nodes):
"""main calculation
Args:
g: super node feature. shape (bs, hidden_dim_super)
n_nodes (int): number of nodes
Returns:
g_trans: super --> original transmission
"""
mb = len(g)
# for local updates
g_trans = self.F_super(g)
# intermediate_h_super.shape == (mb, self.hidden_dim)
g_trans = functions.tanh(g_trans)
# intermediate_h_super.shape == (mb, 1, self.hidden_dim)
g_trans = functions.expand_dims(g_trans, 1)
# intermediate_h_super.shape == (mb, atom, self.hidden_dim)
g_trans = functions.broadcast_to(g_trans,
(mb, n_nodes, self.hidden_dim))
return g_trans
示例13: scale_by_tanh
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import expand_dims [as 別名]
def scale_by_tanh(x, low, high):
xp = cuda.get_array_module(x.array)
scale = (high - low) / 2
scale = xp.expand_dims(xp.asarray(scale, dtype=np.float32), axis=0)
mean = (high + low) / 2
mean = xp.expand_dims(xp.asarray(mean, dtype=np.float32), axis=0)
return F.tanh(x) * scale + mean
示例14: compute_eltwise_huber_quantile_loss
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import expand_dims [as 別名]
def compute_eltwise_huber_quantile_loss(y, t, taus, huber_loss_threshold=1.0):
"""Compute elementwise Huber losses for quantile regression.
This is based on Algorithm 1 of https://arxiv.org/abs/1806.06923.
This function assumes that, both of the two kinds of quantile thresholds,
taus (used to compute y) and taus_prime (used to compute t) are iid samples
from U([0,1]).
Args:
y (chainer.Variable): Quantile prediction from taus as a
(batch_size, N)-shaped array.
t (chainer.Variable or ndarray): Target values for quantile regression
as a (batch_size, N_prime)-array.
taus (ndarray): Quantile thresholds used to compute y as a
(batch_size, N)-shaped array.
huber_loss_threshold (float): Threshold of Huber loss. In the IQN
paper, this is denoted by kappa.
Returns:
chainer.Variable: Loss (batch_size, N, N_prime)
"""
assert y.shape == taus.shape
# (batch_size, N) -> (batch_size, N, 1)
y = F.expand_dims(y, axis=2)
# (batch_size, N_prime) -> (batch_size, 1, N_prime)
t = F.expand_dims(t, axis=1)
# (batch_size, N) -> (batch_size, N, 1)
taus = F.expand_dims(taus, axis=2)
# Broadcast to (batch_size, N, N_prime)
y, t, taus = F.broadcast(y, t, taus)
I_delta = ((t.array - y.array) > 0).astype('f')
eltwise_huber_loss = F.huber_loss(
y, t, delta=huber_loss_threshold, reduce='no')
eltwise_loss = abs(taus - I_delta) * eltwise_huber_loss
return eltwise_loss
示例15: update_on_policy
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import expand_dims [as 別名]
def update_on_policy(self, statevar):
assert self.t_start < self.t
if not self.disable_online_update:
next_values = {}
for t in range(self.t_start + 1, self.t):
next_values[t - 1] = self.past_values[t]
if statevar is None:
next_values[self.t - 1] = chainer.Variable(
self.xp.zeros_like(self.past_values[self.t - 1].array))
else:
with state_kept(self.model):
_, v = self.model(statevar)
next_values[self.t - 1] = v
log_probs = {t: self.past_action_distrib[t].log_prob(
self.xp.asarray(self.xp.expand_dims(a, 0)))
for t, a in self.past_actions.items()}
self.online_batch_losses.append(self.compute_loss(
t_start=self.t_start, t_stop=self.t,
rewards=self.past_rewards,
values=self.past_values,
next_values=next_values,
log_probs=log_probs))
if len(self.online_batch_losses) == self.batchsize:
loss = chainerrl.functions.sum_arrays(
self.online_batch_losses) / self.batchsize
self.update(loss)
self.online_batch_losses = []
self.init_history_data_for_online_update()