當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.exp方法代碼示例

本文整理匯總了Python中chainer.functions.exp方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.exp方法的具體用法?Python functions.exp怎麽用?Python functions.exp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.exp方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import exp [as 別名]
def __call__(self, state):
        h = state
        for layer in self.hidden_layers:
            h = F.relu(layer(h))
        v = self.v(h)
        mu = self.mu(h)

        if self.scale_mu:
            mu = scale_by_tanh(mu, high=self.action_space.high,
                               low=self.action_space.low)

        mat_diag = F.exp(self.mat_diag(h))
        if hasattr(self, 'mat_non_diag'):
            mat_non_diag = self.mat_non_diag(h)
            tril = lower_triangular_matrix(mat_diag, mat_non_diag)
            mat = F.matmul(tril, tril, transb=True)
        else:
            mat = F.expand_dims(mat_diag ** 2, axis=2)
        return QuadraticActionValue(
            mu, mat, v, min_action=self.action_space.low,
            max_action=self.action_space.high) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:23,代碼來源:state_q_functions.py

示例2: _s_t_functions

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import exp [as 別名]
def _s_t_functions(self, x, adj):
        y = self.rgcn(x, adj)
        batch_size = x.shape[0]
        if self.apply_batch_norm:
            y = self.batch_norm(y)
        y = self.lin1(y)
        y = F.tanh(y)
        y = self.lin2(y) * F.exp(self.scale_factor*2)
        s = y[:, :self.out_size]
        t = y[:, self.out_size:]
        s = F.sigmoid(s + 2)

        t = F.reshape(t, [batch_size, 1, self.out_size])
        t = F.broadcast_to(t, [batch_size, int(self.num_nodes / self.num_masked_cols), self.out_size])
        s = F.reshape(s, [batch_size, 1, self.out_size])
        s = F.broadcast_to(s, [batch_size, int(self.num_nodes / self.num_masked_cols), self.out_size])
        return s, t 
開發者ID:pfnet-research,項目名稱:graph-nvp,代碼行數:19,代碼來源:coupling.py

示例3: predict

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import exp [as 別名]
def predict(self, input_x):
        output = self.predictor(input_x)
        batch_size, input_channel, input_h, input_w = input_x.shape
        batch_size, _, grid_h, grid_w = output.shape
        x, y, w, h, conf, prob = F.split_axis(F.reshape(output, (batch_size, self.predictor.n_boxes, self.predictor.n_classes+5, grid_h, grid_w)), (1, 2, 3, 4, 5), axis=2)
        x = F.sigmoid(x) # xのactivation
        y = F.sigmoid(y) # yのactivation
        conf = F.sigmoid(conf) # confのactivation
        prob = F.transpose(prob, (0, 2, 1, 3, 4))
        prob = F.softmax(prob) # probablitiyのacitivation
        prob = F.transpose(prob, (0, 2, 1, 3, 4))

        # x, y, w, hを絶対座標へ変換
        x_shift = Variable(np.broadcast_to(np.arange(grid_w, dtype=np.float32), x.shape))
        y_shift = Variable(np.broadcast_to(np.arange(grid_h, dtype=np.float32).reshape(grid_h, 1), y.shape))
        w_anchor = Variable(np.broadcast_to(np.reshape(np.array(self.anchors, dtype=np.float32)[:, 0], (self.predictor.n_boxes, 1, 1, 1)), w.shape))
        h_anchor = Variable(np.broadcast_to(np.reshape(np.array(self.anchors, dtype=np.float32)[:, 1], (self.predictor.n_boxes, 1, 1, 1)), h.shape))
        #x_shift.to_gpu(), y_shift.to_gpu(), w_anchor.to_gpu(), h_anchor.to_gpu()
        box_x = (x + x_shift) / grid_w
        box_y = (y + y_shift) / grid_h
        box_w = F.exp(w) * w_anchor / grid_w
        box_h = F.exp(h) * h_anchor / grid_h

        return box_x, box_y, box_w, box_h, conf, prob 
開發者ID:leetenki,項目名稱:YOLOv2,代碼行數:26,代碼來源:yolov2.py

示例4: prob

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import exp [as 別名]
def prob(self, x):
        return F.exp(self.log_prob(x)) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:4,代碼來源:distribution.py

示例5: _lossfun

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import exp [as 別名]
def _lossfun(self,
                 entropy, vs_pred, log_probs,
                 vs_pred_old, log_probs_old,
                 advs, vs_teacher):

        prob_ratio = F.exp(log_probs - log_probs_old)

        loss_policy = - F.mean(F.minimum(
            prob_ratio * advs,
            F.clip(prob_ratio, 1 - self.clip_eps, 1 + self.clip_eps) * advs))

        if self.clip_eps_vf is None:
            loss_value_func = F.mean_squared_error(vs_pred, vs_teacher)
        else:
            loss_value_func = F.mean(F.maximum(
                F.square(vs_pred - vs_teacher),
                F.square(_elementwise_clip(vs_pred,
                                           vs_pred_old - self.clip_eps_vf,
                                           vs_pred_old + self.clip_eps_vf)
                         - vs_teacher)
            ))
        loss_entropy = -F.mean(entropy)

        self.value_loss_record.append(float(loss_value_func.array))
        self.policy_loss_record.append(float(loss_policy.array))

        loss = (
            loss_policy
            + self.value_func_coef * loss_value_func
            + self.entropy_coef * loss_entropy
        )

        return loss 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:35,代碼來源:ppo.py

示例6: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import exp [as 別名]
def __call__(self):
        """Return a temperature as a chainer.Variable."""
        return F.exp(self.log_temperature) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:5,代碼來源:soft_actor_critic.py

示例7: _compute_gain

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import exp [as 別名]
def _compute_gain(self, log_prob, log_prob_old, entropy, advs):
        """Compute a gain to maximize."""
        prob_ratio = F.exp(log_prob - log_prob_old)
        mean_entropy = F.mean(entropy)
        surrogate_gain = F.mean(prob_ratio * advs)
        return surrogate_gain + self.entropy_coef * mean_entropy 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:8,代碼來源:trpo.py

示例8: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import exp [as 別名]
def forward(self, x):
        y1 = F.exp(x)
        return y1 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:5,代碼來源:MathMisc.py

示例9: main

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import exp [as 別名]
def main():
    np.random.seed(314)

    x = np.random.rand(6, 4).astype(np.float32)
    s_int = np.array(-10)
    s_float = np.array(10.0)

    testtools.generate_testcase(Sin(), [x], subname='sin')
    testtools.generate_testcase(Sinh(), [x], subname='sinh')
    testtools.generate_testcase(Sign(), [x], subname='sign')
    testtools.generate_testcase(Cos(), [x], subname='cos')
    testtools.generate_testcase(Cosh(), [x], subname='cosh')
    testtools.generate_testcase(Tan(), [x], subname='tan')
    testtools.generate_testcase(Tanh(), [x], subname='tanh')
    testtools.generate_testcase(ArcSin(), [x], subname='arcsin')
    testtools.generate_testcase(ArcCos(), [x], subname='arccos')
    testtools.generate_testcase(ArcTan(), [x], subname='arctan')
    testtools.generate_testcase(Exp(), [x], subname='exp')
    testtools.generate_testcase(Log(), [x], subname='log')
    testtools.generate_testcase(Clip(), [x], subname='clip')
    testtools.generate_testcase(ClipNp(), [x], subname='clip_np')
    testtools.generate_testcase(Abs(), [x], subname='abs')
    testtools.generate_testcase(AbsNp(), [x], subname='abs_np')
    testtools.generate_testcase(Sqrt(), [x], subname='sqrt')
    testtools.generate_testcase(Round(), [x], subname='round')
    testtools.generate_testcase(AbsBuiltin(), [x], subname='abs_builtin')
    testtools.generate_testcase(AbsBuiltin(), [s_float], subname='abs_builtin_scalar_float')
    testtools.generate_testcase(AbsBuiltin(), [s_int], subname='abs_builtin_scalar_int') 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:30,代碼來源:MathMisc.py

示例10: gaussian_kl

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import exp [as 別名]
def gaussian_kl(params0, params1):
    (mean0, logstd0), (mean1, logstd1) = params0, params1
    assert mean0.shape == logstd0.shape == mean1.shape == logstd1.shape
    return F.sum(
        logstd1 - logstd0 + (F.square(F.exp(logstd0)) + F.square(mean0 - mean1)) / (
                2.0 * F.square(F.exp(logstd1))) - 0.5,
        axis=1
    ) 
開發者ID:openai,項目名稱:EPG,代碼行數:10,代碼來源:utils.py

示例11: categorical_kl

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import exp [as 別名]
def categorical_kl(params0, params1):
    params0 = params0[0]
    params1 = params1[0]
    assert params0.shape == params1.shape
    a0 = params0 - F.tile(F.max(params0, axis=1, keepdims=True), (1, 4))
    a1 = params1 - F.tile(F.max(params1, axis=1, keepdims=True), (1, 4))
    ea0 = F.exp(a0)
    ea1 = F.exp(a1)
    z0 = F.tile(F.sum(ea0, axis=1, keepdims=True), (1, 4))
    z1 = F.tile(F.sum(ea1, axis=1, keepdims=True), (1, 4))
    p0 = ea0 / z0
    return F.sum(p0 * (a0 - F.log(z0) - a1 + F.log(z1)), axis=1) 
開發者ID:openai,項目名稱:EPG,代碼行數:14,代碼來源:utils.py

示例12: _compute_ppo_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import exp [as 別名]
def _compute_ppo_loss(self, obs, acts, at, vt, old_params):
        params = self._pi_f(obs)
        cv = F.flatten(self._vf_f(obs))
        ratio = F.exp(self._logp(params, acts) - self._logp(old_params, acts))
        surr1 = ratio * at
        surr2 = F.clip(ratio, 1 - self._ppo_clipparam, 1 + self._ppo_clipparam) * at
        ppo_surr_loss = (
                -sym_mean(F.minimum(surr1, surr2))
                + self._ppo_klcoeff * sym_mean(self.kl(old_params, params))
                + sym_mean(F.square(cv - vt))
        )
        return ppo_surr_loss 
開發者ID:openai,項目名稱:EPG,代碼行數:14,代碼來源:agents.py

示例13: _pi_logp

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import exp [as 別名]
def _pi_logp(self, obs, acts):
        mean, logstd = self._pi_f(obs)
        return (
                - 0.5 * np.log(2.0 * np.pi) * acts.shape[1]
                - 0.5 * F.sum(F.square((acts - mean) / (F.exp(logstd)) + 1e-8), axis=1)
                - F.sum(logstd, axis=1)
        ) 
開發者ID:openai,項目名稱:EPG,代碼行數:9,代碼來源:agents.py

示例14: _logp

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import exp [as 別名]
def _logp(self, params, acts):
        mean, logstd = params
        return (
                - 0.5 * np.log(2.0 * np.pi) * acts.shape[1]
                - 0.5 * F.sum(F.square((acts - mean) / (F.exp(logstd)) + 1e-8), axis=1)
                - F.sum(logstd, axis=1)
        ) 
開發者ID:openai,項目名稱:EPG,代碼行數:9,代碼來源:agents.py

示例15: setUp

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import exp [as 別名]
def setUp(self):
        cuda.memory_pool.free_all_blocks()
        self.h = function_hooks.CupyMemoryProfileHook()
        f1 = functions.exp
        f2 = functions.relu
        self.x = numpy.random.uniform(-0.1, 0.1, (3, 5)).astype(numpy.float32)
        x = cuda.to_gpu(self.x)
        with self.h:
            f1(chainer.Variable(x))
            f1(chainer.Variable(x))
            f2(chainer.Variable(x))
            f2(chainer.Variable(x)) 
開發者ID:chainer,項目名稱:chainer,代碼行數:14,代碼來源:test_cupy_memory_profile.py


注:本文中的chainer.functions.exp方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。