當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.dropout方法代碼示例

本文整理匯總了Python中chainer.functions.dropout方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.dropout方法的具體用法?Python functions.dropout怎麽用?Python functions.dropout使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.dropout方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: residual

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import dropout [as 別名]
def residual(self, x):
        h = x
        h = self.c1(h)
        if self.bn:
            h = self.b1(h)
        if self.activation:
            h = self.activation(h)
        if self.mode:
            h = self.mode(h)
        if self.dr:
            with chainer.using_config('train', True):
                h = F.dropout(h, self.dr)
        h = self.c2(h)
        if self.bn:
            h = self.b2(h)
        if self.activation:
            h = self.activation(h)
        return h 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:20,代碼來源:block.py

示例2: forward_one_step

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import dropout [as 別名]
def forward_one_step(self, x_data, y_data, state, train=True, dropout_ratio=0.5):
        x = Variable(x_data, volatile=not train)
        t = Variable(y_data, volatile=not train)

        h0      = self.embed(x)
        h1_in   = self.l1_x(F.dropout(h0, ratio=dropout_ratio, train=train)) + self.l1_h(state['h1'])
        c1, h1  = F.lstm(state['c1'], h1_in)
        h2_in   = self.l2_x(F.dropout(h1, ratio=dropout_ratio, train=train)) + self.l2_h(state['h2'])
        c2, h2  = F.lstm(state['c2'], h2_in)
        y       = self.l3(F.dropout(h2, ratio=dropout_ratio, train=train))
        state   = {'c1': c1, 'h1': h1, 'c2': c2, 'h2': h2}

        if train:
            return state, F.softmax_cross_entropy(y, t)
        else:
            return state, F.softmax(y) 
開發者ID:yusuketomoto,項目名稱:chainer-char-rnn,代碼行數:18,代碼來源:CharRNN.py

示例3: block_embed

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import dropout [as 別名]
def block_embed(embed, x, dropout=0.):
    """Embedding function followed by convolution

    Args:
        embed (callable): A :func:`~chainer.functions.embed_id` function
            or :class:`~chainer.links.EmbedID` link.
        x (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \
        :class:`cupy.ndarray`): Input variable, which
            is a :math:`(B, L)`-shaped int array. Its first dimension
            :math:`(B)` is assumed to be the *minibatch dimension*.
            The second dimension :math:`(L)` is the length of padded
            sentences.
        dropout (float): Dropout ratio.

    Returns:
        ~chainer.Variable: Output variable. A float array with shape
        of :math:`(B, N, L, 1)`. :math:`(N)` is the number of dimensions
        of word embedding.

    """
    e = embed(x)
    e = F.dropout(e, ratio=dropout)
    e = F.transpose(e, (0, 2, 1))
    e = e[:, :, :, None]
    return e 
開發者ID:Pinafore,項目名稱:qb,代碼行數:27,代碼來源:nets.py

示例4: __init__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import dropout [as 別名]
def __init__(self, n_layers, n_vocab, embed_size, hidden_size, dropout=0.1):
        hidden_size /= 3
        super(CNNEncoder, self).__init__(
            embed=L.EmbedID(n_vocab, embed_size, ignore_label=-1,
                            initialW=embed_init),
            cnn_w3=L.Convolution2D(
                embed_size, hidden_size, ksize=(3, 1), stride=1, pad=(2, 0),
                nobias=True),
            cnn_w4=L.Convolution2D(
                embed_size, hidden_size, ksize=(4, 1), stride=1, pad=(3, 0),
                nobias=True),
            cnn_w5=L.Convolution2D(
                embed_size, hidden_size, ksize=(5, 1), stride=1, pad=(4, 0),
                nobias=True),
            mlp=MLP(n_layers, hidden_size * 3, dropout)
        )
        self.output_size = hidden_size * 3
        self.dropout = dropout 
開發者ID:Pinafore,項目名稱:qb,代碼行數:20,代碼來源:nets.py

示例5: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import dropout [as 別名]
def __call__(self, x, t):
        h = F.relu(self.conv1_1(x))
        h = F.relu(self.conv1_2(h))
        h = F.max_pooling_2d(h, 2, 2)
        h = F.relu(self.conv2_1(h))
        h = F.relu(self.conv2_2(h))
        h = F.max_pooling_2d(h, 2, 2)
        h = F.relu(self.conv3_1(h))
        h = F.relu(self.conv3_2(h))
        h = F.relu(self.conv3_3(h))
        h = F.max_pooling_2d(h, 2, 2)
        h = F.relu(self.conv4_1(h))
        h = F.relu(self.conv4_2(h))
        h = F.relu(self.conv4_3(h))
        h = F.max_pooling_2d(h, 2, 2)
        h = F.relu(self.conv5_1(h))
        h = F.relu(self.conv5_2(h))
        h = F.relu(self.conv5_3(h))
        h = F.max_pooling_2d(h, 2, 2)
        h = F.dropout(F.relu(self.fc6(h)), ratio=0.5, train=self.train)
        h = F.dropout(F.relu(self.fc7(h)), ratio=0.5, train=self.train)
        h = self.score_fr(h)
        h = self.upsample(h)

        return h 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:27,代碼來源:FCN_32s.py

示例6: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import dropout [as 別名]
def __call__(self, x, t):
        h = F.relu(self.conv1(x))
        h = F.max_pooling_2d(h, 2, 1)
        h = F.relu(self.conv2(h))
        h = F.relu(self.conv3(h))
        h = F.dropout(F.relu(self.fc4(h)), train=self.train)
        h = self.fc5(h)
        h = F.reshape(h, (x.data.shape[0], 3, 16, 16))
        h = self.channelwise_inhibited(h)

        if self.train:
            self.loss = F.softmax_cross_entropy(h, t, normalize=False)
            return self.loss
        else:
            self.pred = F.softmax(h)
            return self.pred 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:18,代碼來源:MnihCNN_cis.py

示例7: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import dropout [as 別名]
def __call__(self, prev_states, x_in):
        input_below = x_in
        states_cursor = 0
        res = []
        for i in six.moves.range(len(self)):
            if self.dropout is not None and not (self.no_dropout_on_input and i == 0):
                input_below = F.dropout(input_below, ratio=self.dropout)
            new_states = self[i](prev_states[states_cursor:states_cursor + self.nb_of_states[i]], input_below)
            states_cursor += self.nb_of_states[i]

            if (self.residual_connection and
                not (i == len(self) - 1 and self.no_residual_connection_on_output) and
                    not (i == 0 and self.no_residual_connection_on_input)):
                input_below = new_states[-1] + input_below
            else:
                input_below = new_states[-1]

            res += list(new_states)
        return res 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:21,代碼來源:rnn_cells.py

示例8: __init__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import dropout [as 別名]
def __init__(self, d_model = 512, n_heads = 8, experimental_relu=False, dropout=None):
        if d_model%n_heads != 0:
            raise ValueError("d_model(%i) should be divisible by n_head(%i)"%(d_model, n_heads))
        
        super(ConstantSizeMultiBatchMultiHeadAttention, self).__init__(
            w_Q = L.Linear(d_model, d_model, nobias=False),
            w_K = L.Linear(d_model, d_model, nobias=True),
            w_V = L.Linear(d_model, d_model, nobias=False),
            )
        
        if n_heads >= 2:
            self.add_link("w_O", L.Linear(d_model, d_model)) #if n_heads == 1, it is redundant with w_V
        
        self.d_model = d_model
        self.n_heads = n_heads
        self.head_size = d_model // n_heads
        
        scaling_factor = 1.0 / self.xp.sqrt(self.xp.array([[[[self.head_size]]]], dtype=self.xp.float32))
        self.add_persistent("scaling_factor", scaling_factor) #added as persistent so that it works with to_gpu/to_cpu
        
        self.experimental_relu = experimental_relu
        
        self.dropout = dropout 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:25,代碼來源:multi_attention.py

示例9: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import dropout [as 別名]
def __call__(self, sub_output, inpt):
        if self.dropout is not None:
            sub_output = F.dropout(sub_output, ratio=self.dropout)
            
        if self.residual_mode == "normal":
            added_output = sub_output + inpt
        else:
            added_output = sub_output
        
        if self.no_normalize:
            final_layer = added_output
        else:
            final_layer = self.apply_layer_normalization(added_output)

        if self.residual_mode == "after":
            final_layer = final_layer + inpt

        return final_layer


########################################################################
# Feed Forward layer with pass-through and normalization
# 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:25,代碼來源:utils.py

示例10: __init__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import dropout [as 別名]
def __init__(self, d_model, n_heads, d_ff=2048, experimental_relu=False, dropout=None,
                 residual_mode="normal", no_normalize=False):
        super(DecoderLayer, self).__init__(
            ff_layer = FeedForward(d_model, d_ff=d_ff, dropout=dropout, residual_mode=residual_mode, no_normalize=no_normalize),
            self_attention_layer = AddAndNormalizedSelfAttentionLayer(d_model=d_model, n_heads=n_heads,
                                                             experimental_relu=experimental_relu,
                                                          dropout=dropout, residual_mode=residual_mode, no_normalize=no_normalize),
            
            cross_attention_layer = AddAndNormalizedCrossAttentionLayer(d_model=d_model, n_heads=n_heads,
                                                             experimental_relu=experimental_relu,
                                                          dropout=dropout, 
                                        residual_mode=residual_mode if residual_mode != "none" else "normal", no_normalize=no_normalize) # Does not seem good to not let the cross attention be bypassed
        )
        
        self.n_heads = n_heads
        self.d_model = d_model 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:18,代碼來源:decoder.py

示例11: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import dropout [as 別名]
def __call__(self, x):
        h = F.relu(self.conv1_1(x))
        h = F.relu(self.conv1_2(h))
        h = F.max_pooling_2d(h, 2, stride=2)
        h = F.relu(self.conv2_1(h))
        h = F.relu(self.conv2_2(h))
        h = F.max_pooling_2d(h, 2, stride=2)
        h = F.relu(self.conv3_1(h))
        h = F.relu(self.conv3_2(h))
        h = F.max_pooling_2d(h, 2, stride=2)
        h = F.relu(self.conv4_1(h))
        h = F.relu(self.conv4_2(h))
        h = F.spatial_pyramid_pooling_2d(h, 3, F.MaxPooling2D)
        h = F.tanh(self.fc4(h))
        h = F.dropout(h, ratio=.5, train=self.train)
        h = F.tanh(self.fc5(h))
        h = F.dropout(h, ratio=.5, train=self.train)
        h = self.fc6(h)
        return h 
開發者ID:oyam,項目名稱:Semantic-Segmentation-using-Adversarial-Networks,代碼行數:21,代碼來源:spp_discriminator.py

示例12: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import dropout [as 別名]
def __call__(self, x):
        h = F.relu(self.conv1_1(x))
        h = F.relu(self.conv1_2(h))
        h = F.max_pooling_2d(h, 2, stride=2)
        h = F.relu(self.conv2_1(h))
        h = F.relu(self.conv2_2(h))
        h = F.max_pooling_2d(h, 2, stride=2)
        h = F.relu(self.conv3_1(h))
        h = F.relu(self.conv3_2(h))
        h = F.relu(self.conv3_3(h))
        h = F.max_pooling_2d(h, 2, stride=2)
        h = F.relu(self.conv4_1(h))
        h = F.relu(self.conv4_2(h))
        h = F.relu(self.conv4_3(h))
        h = F.max_pooling_2d(h, 2, stride=2)
        h = F.relu(self.conv5_1(h))
        h = F.relu(self.conv5_2(h))
        h = F.relu(self.conv5_3(h))
        h = F.max_pooling_2d(h, 2, stride=2)
        h = F.dropout(F.relu(self.fc6(h)), train=self.train, ratio=0.5)
        h = F.dropout(F.relu(self.fc7(h)), train=self.train, ratio=0.5)
        h = self.fc8(h)
        return h 
開發者ID:oyam,項目名稱:Semantic-Segmentation-using-Adversarial-Networks,代碼行數:25,代碼來源:vgg16.py

示例13: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import dropout [as 別名]
def forward(self, x, t):
        # def forward(self, x):
        h = F.max_pooling_2d(F.local_response_normalization(
            F.relu(self.conv1(x))), 3, stride=2)
        h = F.max_pooling_2d(F.local_response_normalization(
            F.relu(self.conv2(h))), 3, stride=2)
        h = F.relu(self.conv3(h))
        h = F.relu(self.conv4(h))
        h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2)
        h = F.dropout(F.relu(self.fc6(h)))
        h = F.dropout(F.relu(self.fc7(h)))
        h = self.fc8(h)

        loss = F.softmax_cross_entropy(h, t)
        #loss = h

        # chainer.report({'loss': loss, 'accuracy': F.accuracy(h, t)}, self)
        return loss

# from https://github.com/chainer/chainer/blob/master/examples/imagenet/alex.py 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:22,代碼來源:Alex_with_loss.py

示例14: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import dropout [as 別名]
def forward(self, x, t):
        # def forward(self, x):
        h = F.max_pooling_2d(F.local_response_normalization(
            F.relu(self.conv1(x))), 3, stride=2)
        h = F.max_pooling_2d(F.local_response_normalization(
            F.relu(self.conv2(h))), 3, stride=2)
        h = F.relu(self.conv3(h))
        h = F.relu(self.conv4(h))
        h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2)
        h = F.dropout(F.relu(self.fc6(h)))
        h = F.dropout(F.relu(self.fc7(h)))
        h = self.fc8(h)

        loss = F.softmax_cross_entropy(h, t)
        #loss = h

        # chainer.report({'loss': loss, 'accuracy': F.accuracy(h, t)}, self)
        return loss 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:20,代碼來源:Alex.py

示例15: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import dropout [as 別名]
def forward(self, x, t):
        h = F.max_pooling_2d(F.local_response_normalization(
            F.relu(self.conv1(x))), 3, stride=2)
        h = F.max_pooling_2d(F.local_response_normalization(
            F.relu(self.conv2(h))), 3, stride=2)
        h = F.relu(self.conv3(h))
        h = F.relu(self.conv4(h))
        h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2)
        h = F.dropout(F.relu(self.fc6(h)))
        h = F.dropout(F.relu(self.fc7(h)))
        h = self.fc8(h)

        # EDIT(hamaji): ONNX-chainer cannot output SoftmaxCrossEntropy.
        # loss = F.softmax_cross_entropy(h, t)
        loss = self.softmax_cross_entropy(h, t)
        if self.compute_accuracy:
            chainer.report({'loss': loss, 'accuracy': F.accuracy(h, t)}, self)
        else:
            chainer.report({'loss': loss}, self)
        return loss 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:22,代碼來源:alex.py


注:本文中的chainer.functions.dropout方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。