當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.deconvolution_2d方法代碼示例

本文整理匯總了Python中chainer.functions.deconvolution_2d方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.deconvolution_2d方法的具體用法?Python functions.deconvolution_2d怎麽用?Python functions.deconvolution_2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.deconvolution_2d方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: check_forward_consistency_regression

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import deconvolution_2d [as 別名]
def check_forward_consistency_regression(self, backend_config):
        inputs = self.generate_inputs()
        if self.nobias:
            x, W = inputs
            b = None
        else:
            x, W, b = inputs
        x = chainer.Variable(backend_config.get_array(x))
        W = chainer.Variable(backend_config.get_array(W))
        if b is not None:
            b = chainer.Variable(backend_config.get_array(b))

        use_cudnn = backend_config.use_cudnn

        with chainer.using_config('use_cudnn', use_cudnn):
            y_nd = F.deconvolution_nd(x, W, b, stride=self.stride,
                                      pad=self.pad, outsize=self.outsize,
                                      dilate=self.dilate)
            y_2d = F.deconvolution_2d(x, W, b, stride=self.stride,
                                      pad=self.pad, outsize=self.outsize,
                                      dilate=self.dilate)

        testing.assert_allclose(
            y_nd.array, y_2d.array, **self.check_forward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:26,代碼來源:test_deconvolution_nd.py

示例2: forward_expected

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import deconvolution_2d [as 別名]
def forward_expected(self, inputs):
        """
        Current forward_expected implementation depends on
        F.deconvolution_2d itself and thus it's only capable
        of checking consistency between backends, not absolute
        correctness of computations
        """
        if self.nobias:
            x, W = inputs
            b = None
        else:
            x, W, b = inputs
        y_expected = F.deconvolution_2d(
            x, W, b, stride=self.stride, pad=self.pad,
            outsize=self.outsize, dilate=self.dilate,
            groups=self.groups)
        return y_expected.array, 
開發者ID:chainer,項目名稱:chainer,代碼行數:19,代碼來源:test_deconvolution_2d.py

示例3: scale_layer

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import deconvolution_2d [as 別名]
def scale_layer(self, feature_map, node):
        input_data = node.inputs[0].data
        _, _, in_height, in_width = input_data.shape
        _, _, feature_height, feature_width = feature_map.shape
        kernel_height = in_height + 2 * node.ph - node.sy * (feature_height - 1)
        kernel_width = in_width + 2 * node.pw - node.sx * (feature_width - 1)
        scaled_feature = F.deconvolution_2d(
            feature_map,
            self.xp.ones((1, 1, kernel_height, kernel_width)),
            stride=(node.sy, node.sx),
            pad=(node.ph, node.pw),
            outsize=(in_height, in_width),
        )
        averaged_feature_map = F.average(input_data, axis=1, keepdims=True)
        feature_map = scaled_feature * averaged_feature_map
        return feature_map 
開發者ID:Bartzi,項目名稱:see,代碼行數:18,代碼來源:visual_backprop.py

示例4: gen_convtranspose_bn

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import deconvolution_2d [as 別名]
def gen_convtranspose_bn(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    bsize = 2
    ichan = 3
    ochan = 4
    ksize = 3
    isize = 7

    x = aranges(bsize, ochan, isize, isize)
    w = aranges(ochan, ichan, ksize, ksize) * 0.01
    scale = aranges(ichan) * 0.1 + 1
    bias = aranges(ichan) * 0.1 + 2
    mean = aranges(ichan) * 0.1 + 3
    var = aranges(ichan) * 0.1 + 4

    conv = F.deconvolution_2d(x, w, pad=1, outsize=(isize, isize))
    y = F.fixed_batch_normalization(conv, scale, bias, mean, var)

    x_v = gb.input('x', x)
    w_v = gb.param('w', w)
    scale_v = gb.param('scale', scale)
    bias_v = gb.param('bias', bias)
    mean_v = gb.param('mean', mean)
    var_v = gb.param('var', var)

    conv_v = gb.ConvTranspose([x_v, w_v],
                              kernel_shape=[ksize, ksize],
                              pads=[1, 1, 1, 1],
                              output_shape=[isize, isize])
    y_v = gb.BatchNormalization([conv_v, scale_v, bias_v, mean_v, var_v])

    gb.output(y_v, y)
    gb.gen_test() 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:35,代碼來源:gen_extra_test.py

示例5: forward_expected

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import deconvolution_2d [as 別名]
def forward_expected(self, link, inputs):
        x, = inputs
        W = link.W
        if self.nobias:
            y = F.deconvolution_2d(
                x, W,
                stride=self.stride, pad=self.pad,
                dilate=self.dilate, groups=self.groups)
        else:
            b = link.b
            y = F.deconvolution_2d(
                x, W, b,
                stride=self.stride, pad=self.pad,
                dilate=self.dilate, groups=self.groups)
        return y.array, 
開發者ID:chainer,項目名稱:chainer,代碼行數:17,代碼來源:test_deconvolution_2d.py

示例6: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import deconvolution_2d [as 別名]
def forward(self, inputs, device):
        if self.nobias:
            x, W = inputs
            b = None
        else:
            x, W, b = inputs
        y = F.deconvolution_2d(
            x, W, b, stride=self.stride, pad=self.pad,
            outsize=self.outsize, dilate=self.dilate,
            groups=self.groups)
        return y, 
開發者ID:chainer,項目名稱:chainer,代碼行數:13,代碼來源:test_deconvolution_2d.py

示例7: check_invalid_dilation

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import deconvolution_2d [as 別名]
def check_invalid_dilation(self, x_data, w_data):
        x = chainer.Variable(x_data)
        w = chainer.Variable(w_data)
        F.deconvolution_2d(x, w, dilate=self.dilate) 
開發者ID:chainer,項目名稱:chainer,代碼行數:6,代碼來源:test_deconvolution_2d.py

示例8: backward_convolution

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import deconvolution_2d [as 別名]
def backward_convolution(x_in, x, l):
    y = F.deconvolution_2d(x, l.W, None, l.stride, l.pad, (x_in.data.shape[2], x_in.data.shape[3]))
    return y 
開發者ID:pfnet-research,項目名稱:chainer-gan-lib,代碼行數:5,代碼來源:net.py

示例9: backward_convolution

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import deconvolution_2d [as 別名]
def backward_convolution(x_in, x, l):
    y = F.deconvolution_2d(x, l.W, None, l.stride, l.pad, None)#(x_in.data.shape[2], x_in.data.shape[3]))
    return y 
開發者ID:Aixile,項目名稱:chainer-gan-experiments,代碼行數:5,代碼來源:backwards.py

示例10: test_forward1

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import deconvolution_2d [as 別名]
def test_forward1(self):
        n, c_i, c_o = 10, 1, 3
        h_i, w_i = 5, 10
        h_k, w_k = 10, 10
        h_p, w_p = 5, 5
        s_y, s_x = 5, 5
        x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)).astype(np.float32)
        W = np.random.uniform(0, 1, (c_i, c_o, h_k, w_k)).astype(np.float32)
        b = np.random.uniform(0, 1, c_o).astype(np.float32)

        expected = CF.deconvolution_2d(x, W, b, stride=(s_y, s_x),
                                       pad=(h_p, w_p))
        y = F.deconv2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
        self.assertTrue(array_allclose(expected.data, y.data)) 
開發者ID:oreilly-japan,項目名稱:deep-learning-from-scratch-3,代碼行數:16,代碼來源:gpu_test_deconv2d.py

示例11: test_forward2

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import deconvolution_2d [as 別名]
def test_forward2(self):
        n, c_i, c_o = 10, 1, 3
        h_i, w_i = 5, 10
        h_k, w_k = 10, 10
        h_p, w_p = 5, 5
        s_y, s_x = 5, 5
        x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)).astype(np.float32)
        W = np.random.uniform(0, 1, (c_i, c_o, h_k, w_k)).astype(np.float32)
        b = None
        expected = CF.deconvolution_2d(x, W, b, stride=(s_y, s_x),
                                       pad=(h_p, w_p))
        y = F.deconv2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
        self.assertTrue(array_allclose(expected.data, y.data)) 
開發者ID:oreilly-japan,項目名稱:deep-learning-from-scratch-3,代碼行數:15,代碼來源:gpu_test_deconv2d.py


注:本文中的chainer.functions.deconvolution_2d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。