當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.concat方法代碼示例

本文整理匯總了Python中chainer.functions.concat方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.concat方法的具體用法?Python functions.concat怎麽用?Python functions.concat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.concat方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import concat [as 別名]
def __call__(self, x):
        if self.dr:
            with chainer.using_config('train', True):
                x = F.dropout(x, self.dr)
        if self.gap:
            x = F.sum(x, axis=(2,3))
        N = x.shape[0]
        #Below code copyed from https://github.com/pfnet-research/chainer-gan-lib/blob/master/minibatch_discrimination/net.py
        feature = F.reshape(F.leaky_relu(x), (N, -1))
        m = F.reshape(self.md(feature), (N, self.B * self.C, 1))
        m0 = F.broadcast_to(m, (N, self.B * self.C, N))
        m1 = F.transpose(m0, (2, 1, 0))
        d = F.absolute(F.reshape(m0 - m1, (N, self.B, self.C, N)))
        d = F.sum(F.exp(-F.sum(d, axis=2)), axis=2) - 1
        h = F.concat([feature, d])

        h = self.l(h)
        return h 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:20,代碼來源:block.py

示例2: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import concat [as 別名]
def __call__(self, prev_hg, prev_he, prev_ce, x, v, r, u):
        xu = cf.concat((x, u), axis=1)
        xu = self.downsample_xu(xu)
        v = self.broadcast_v(v)
        if r.shape[2] == 1:
            r = self.broadcast_r(r)

        lstm_input = cf.concat((prev_he, prev_hg, xu, v, r), axis=1)
        gate_inputs = self.lstm(lstm_input)

        if self.use_cuda_kernel:
            next_h, next_c = CoreFunction()(gate_inputs, prev_ce)
        else:
            forget_gate_input, input_gate_input, tanh_input, output_gate_input = cf.split_axis(
                gate_inputs, 4, axis=1)

            forget_gate = cf.sigmoid(forget_gate_input)
            input_gate = cf.sigmoid(input_gate_input)
            next_c = forget_gate * prev_ce + input_gate * cf.tanh(tanh_input)
            output_gate = cf.sigmoid(output_gate_input)
            next_h = output_gate * cf.tanh(next_c)

        return next_h, next_c 
開發者ID:musyoku,項目名稱:chainer-gqn,代碼行數:25,代碼來源:inference.py

示例3: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import concat [as 別名]
def __call__(self, prev_hg, prev_cg, prev_z, v, r, prev_u):
        v = self.broadcast_v(v)
        if r.shape[2] == 1:
            r = self.broadcast_r(r)

        lstm_input = cf.concat((prev_hg, v, r, prev_z), axis=1)
        gate_inputs = self.lstm(lstm_input)

        forget_gate_input, input_gate_input, tanh_input, output_gate_input = cf.split_axis(
            gate_inputs, 4, axis=1)

        forget_gate = cf.sigmoid(forget_gate_input)
        input_gate = cf.sigmoid(input_gate_input)
        next_c = forget_gate * prev_cg + input_gate * cf.tanh(tanh_input)
        output_gate = cf.sigmoid(output_gate_input)
        next_h = output_gate * cf.tanh(next_c)

        next_u = self.upsample_h(next_h) + prev_u

        return next_h, next_c, next_u 
開發者ID:musyoku,項目名稱:chainer-gqn,代碼行數:22,代碼來源:generator.py

示例4: n_step_forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import concat [as 別名]
def n_step_forward(self, x, recurrent_state):
        """Multi-step batch forward computation.

        This method sequentially applies layers as chainer.Sequential does.

        Args:
            x (list): Input sequences. Each sequence should be a variable whose
                first axis corresponds to time or a tuple of such variables.
            recurrent_state (object): Batched recurrent state. If set to None,
                it is initialized.
            output_mode (str): If set to 'concat', the output value is
                concatenated into a single large batch, which can be suitable
                for loss computation. If set to 'split', the output value is
                a list of output sequences.

        Returns:
            object: Output sequences. See the description of the `output_mode`
                argument.
            object: New batched recurrent state.
        """
        raise NotImplementedError 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:23,代碼來源:stateless_recurrent.py

示例5: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import concat [as 別名]
def __call__(self, x, recurrent_state):
        """One-step batch forward computation.

        Args:
            x (chainer.Variable, ndarray, or tuple): One-step batched input.
            recurrent_state (object): Batched recurrent state.

        Returns:
            chainer.Variable, ndarray, or tuple: One-step batched output.
            object: New batched recurrent state.
        """
        assert isinstance(x, (chainer.Variable, self.xp.ndarray))
        return self.n_step_forward(
            split_one_step_batch_input(x),
            recurrent_state,
            output_mode='concat',
        ) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:19,代碼來源:stateless_recurrent.py

示例6: channelwise_inhibited

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import concat [as 別名]
def channelwise_inhibited(self, h):
        self.c = random.randint(0, 2)
        xp = cuda.get_array_module(h.data)
        num = h.data.shape[0]

        h = F.split_axis(h, 3, 1)
        c = F.reshape(h[self.c], (num, 16, 16))
        z = Variable(xp.zeros_like(c.data), 'AUTO')
        c = F.batch_matmul(c, z)
        c = F.reshape(c, (num, 1, 16, 16))
        hs = []
        for i, s in enumerate(h):
            if i == self.c:
                hs.append(c)
            else:
                hs.append(s)
        return F.concat(hs, 1) 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:19,代碼來源:MnihCNN_rcis.py

示例7: channelwise_inhibited

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import concat [as 別名]
def channelwise_inhibited(self, h):
        xp = cuda.get_array_module(h.data)
        num = h.data.shape[0]

        h = F.split_axis(h, 3, 1)
        c = F.reshape(h[self.c], (num, 16, 16))
        z = Variable(xp.zeros_like(c.data), 'AUTO')
        c = F.batch_matmul(c, z)
        c = F.reshape(c, (num, 1, 16, 16))
        hs = []
        for i, s in enumerate(h):
            if i == self.c:
                hs.append(c)
            else:
                hs.append(s)
        return F.concat(hs, 1) 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:18,代碼來源:MnihCNN_cis.py

示例8: apply_to_seq

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import concat [as 別名]
def apply_to_seq(self, seq_list):
        mb_size = len(seq_list)
        mb_initial_cell, mb_initial_state = self.get_initial_states(mb_size)
        return self.nstep_lstm(mb_initial_cell, mb_initial_state, seq_list)


# class DoubleGRU(Chain):
#     def __init__(self, H, I):
#         log.info("using double GRU")
#         self.H1 = H/2
#         self.H2 = H - self.H1
#         super(DoubleGRU, self).__init__(
#             gru1 = faster_gru.GRU(self.H1, I),
#             gru2 = faster_gru.GRU(self.H2, self.H1)
#         )
#
#     def __call__(self, prev_state, inpt):
#         prev_state1, prev_state2 = F.split_axis(prev_state, (self.H1,), axis = 1)
#
#         prev_state1 = self.gru1(prev_state1, inpt)
#         prev_state2 = self.gru2(prev_state2, prev_state1)
#
#         return F.concat((prev_state1, prev_state2), axis = 1) 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:25,代碼來源:rnn_cells.py

示例9: advance_state

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import concat [as 別名]
def advance_state(self, previous_states, prev_y):
        current_mb_size = prev_y.data.shape[0]
        assert self.mb_size is None or current_mb_size <= self.mb_size

        if current_mb_size < len(previous_states[0].data):
            truncated_states = [None] * len(previous_states)
            for num_state in six.moves.range(len(previous_states)):
                truncated_states[num_state], _ = F.split_axis(
                    previous_states[num_state], (current_mb_size,), 0)
            previous_states = tuple(truncated_states)

        output_state = previous_states[-1]
        if self.decoder_chain.use_goto_attention:
            ci, attn = self.compute_ctxt(output_state, prev_y)
        else:
            ci, attn = self.compute_ctxt(output_state)
        concatenated = F.concat((prev_y, ci))

        new_states = self.decoder_chain.gru(previous_states, concatenated)
        return new_states, concatenated, attn 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:22,代碼來源:decoder_cells.py

示例10: compute_logits

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import concat [as 別名]
def compute_logits(self, seq_list, encoded_input, mask_input):
        mb_size = len(seq_list)
        max_length_1 = max(len(x) for x in seq_list)
        x, mask = self.make_batch(seq_list)
        
#         print "padded_data", x
#         print "mask", mask
        
        assert self.xp.all(mask_input == self.xp.broadcast_to(mask_input[:,0:1,0:1,:], mask_input.shape))
        
        encoded = self.emb(x)
        encoded += self.get_pos_vect(mb_size, max_length_1)
        
        if self.dropout is not None:
            encoded = F.dropout(encoded, self.dropout)
        
        bos_plus_encoded = F.concat((F.broadcast_to(self.bos_encoding, (mb_size, 1, self.d_model)), encoded), axis=1)
        
        cross_mask = self.xp.broadcast_to(mask_input[:,0:1,0:1,:], (mask_input.shape[0], self.n_heads, bos_plus_encoded.data.shape[1], mask_input.shape[3]))
        
        final_layer =  self.encoding_layers(bos_plus_encoded, encoded_input, mask, cross_mask)
        logits = apply_linear_layer_to_last_dims(final_layer, self.logits_layer)
        return logits 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:25,代碼來源:decoder.py

示例11: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import concat [as 別名]
def __call__(self, x):
        br0 = self.Branch_0.Conv2d_1x1(x)

        br1 = self.Branch_1.Conv2d_0a_1x1(x)
        br1 = self.Branch_1.Conv2d_0b_3x3(br1)

        br2 = self.Branch_2.Conv2d_0a_1x1(x)
        br2 = self.Branch_2.Conv2d_0b_3x3(br2)
        br2 = self.Branch_2.Conv2d_0c_3x3(br2)

        mixed = F.concat((br0, br1, br2), axis=1)

        lazy_init_conv_to_join(self, x)
        up = self.Conv2d_1x1(mixed)

        x += self.scale * up
        if self.activation_fn is not None:
            x = self.activation_fn(x)
        return x 
開發者ID:pfnet-research,項目名稱:nips17-adversarial-attack,代碼行數:21,代碼來源:inception_resnet_v2.py

示例12: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import concat [as 別名]
def __call__(self, s, xs):
        """Calculate all hidden states and cell states.
        Args:
            s  (~chainer.Variable or None): Initial (hidden & cell) states. If ``None``
                is specified zero-vector is used.
            xs (list of ~chianer.Variable): List of input sequences.
                Each element ``xs[i]`` is a :class:`chainer.Variable` holding
                a sequence.
        Return:
            (hy,cy): a pair of hidden and cell states at the end of the sequence,
            ys: a hidden state sequence at the last layer
        """
        if len(xs) > 1:
            sections = np.cumsum(np.array([len(x) for x in xs[:-1]], dtype=np.int32))
            xs = F.split_axis(self.embed(F.concat(xs, axis=0)), sections, axis=0)
        else:
            xs = [ self.embed(xs[0]) ]
        if s is not None:
            hy, cy, ys = self.lstm(s[0], s[1], xs)
        else:
            hy, cy, ys = self.lstm(None, None, xs)

        return (hy,cy), ys 
開發者ID:dialogtekgeek,項目名稱:DSTC6-End-to-End-Conversation-Modeling,代碼行數:25,代碼來源:lstm_encoder.py

示例13: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import concat [as 別名]
def __call__(self, x, h, train):
        xp = chainer.cuda.get_array_module(x)
        param_num = 0
        for name, f in self.forward:
            if 'conv' in name:
                x = getattr(self, name)(x)
                param_num += (f.W.shape[0]*f.W.shape[2]*f.W.shape[3]*f.W.shape[1]+f.W.shape[0])
            elif 'bn' in name:
                x = getattr(self, name)(x, not train)
                param_num += x.data.shape[1]*2
            elif 'act' in name:
                x = f(x)
            else:
                print('not defined function at ResBlock __call__')
                exit(1)
        in_data = [x, h]
        # check of the image size
        small_in_id, large_in_id = (0, 1) if in_data[0].shape[2] < in_data[1].shape[2] else (1, 0)
        pool_num = xp.floor(xp.log2(in_data[large_in_id].shape[2] / in_data[small_in_id].shape[2]))
        for _ in xp.arange(pool_num):
            in_data[large_in_id] = F.max_pooling_2d(in_data[large_in_id], self.pool_size, self.pool_size, 0, False)
        # check of the channel size
        small_ch_id, large_ch_id = (0, 1) if in_data[0].shape[1] < in_data[1].shape[1] else (1, 0)
        pad_num = int(in_data[large_ch_id].shape[1] - in_data[small_ch_id].shape[1])
        tmp = in_data[large_ch_id][:, :pad_num, :, :]
        in_data[small_ch_id] = F.concat((in_data[small_ch_id], tmp * 0), axis=1)
        return (F.relu(in_data[0]+in_data[1]), param_num)


# Construct a CNN model using CGP (list) 
開發者ID:sg-nm,項目名稱:cgp-cnn,代碼行數:32,代碼來源:cnn_model.py

示例14: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import concat [as 別名]
def __call__(self, x):
        N = x.shape[0]
        #Below code copyed from https://github.com/pfnet-research/chainer-gan-lib/blob/master/minibatch_discrimination/net.py
        feature = F.reshape(x, (N, -1))
        m = F.reshape(self.md(feature), (N, self.B * self.C, 1))
        m0 = F.broadcast_to(m, (N, self.B * self.C, N))
        m1 = F.transpose(m0, (2, 1, 0))
        d = F.absolute(F.reshape(m0 - m1, (N, self.B, self.C, N)))
        d = F.sum(F.exp(-F.sum(d, axis=2)), axis=2) - 1
        h = F.concat([feature, d])

        h = self.l(h)
        return h 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:15,代碼來源:block_1d.py

示例15: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import concat [as 別名]
def __call__(self, x, v):
        v = self.broadcast_v(v)
        resnet_in = cf.relu(self.conv1_1(x))
        residual = cf.relu(self.conv1_res(resnet_in))
        out = cf.relu(self.conv1_2(resnet_in))
        out = cf.relu(self.conv1_3(out)) + residual
        resnet_in = cf.concat((out, v), axis=1)
        residual = cf.relu(self.conv2_res(resnet_in))
        out = cf.relu(self.conv2_1(resnet_in))
        out = cf.relu(self.conv2_2(out)) + residual
        out = self.conv2_3(out)
        return out 
開發者ID:musyoku,項目名稱:chainer-gqn,代碼行數:14,代碼來源:representation.py


注:本文中的chainer.functions.concat方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。