當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.broadcast_to方法代碼示例

本文整理匯總了Python中chainer.functions.broadcast_to方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.broadcast_to方法的具體用法?Python functions.broadcast_to怎麽用?Python functions.broadcast_to使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.broadcast_to方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast_to [as 別名]
def __call__(self, x):
        if self.dr:
            with chainer.using_config('train', True):
                x = F.dropout(x, self.dr)
        if self.gap:
            x = F.sum(x, axis=(2,3))
        N = x.shape[0]
        #Below code copyed from https://github.com/pfnet-research/chainer-gan-lib/blob/master/minibatch_discrimination/net.py
        feature = F.reshape(F.leaky_relu(x), (N, -1))
        m = F.reshape(self.md(feature), (N, self.B * self.C, 1))
        m0 = F.broadcast_to(m, (N, self.B * self.C, N))
        m1 = F.transpose(m0, (2, 1, 0))
        d = F.absolute(F.reshape(m0 - m1, (N, self.B, self.C, N)))
        d = F.sum(F.exp(-F.sum(d, axis=2)), axis=2) - 1
        h = F.concat([feature, d])

        h = self.l(h)
        return h 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:20,代碼來源:block.py

示例2: _evaluate_psi_x_with_quantile_thresholds

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast_to [as 別名]
def _evaluate_psi_x_with_quantile_thresholds(psi_x, phi, f, taus):
    assert psi_x.ndim == 2
    batch_size, hidden_size = psi_x.shape
    assert taus.ndim == 2
    assert taus.shape[0] == batch_size
    n_taus = taus.shape[1]
    phi_taus = phi(taus)
    assert phi_taus.ndim == 3
    assert phi_taus.shape == (batch_size, n_taus, hidden_size)
    psi_x_b = F.broadcast_to(
        F.expand_dims(psi_x, axis=1), phi_taus.shape)
    h = psi_x_b * phi_taus
    h = F.reshape(h, (-1, hidden_size))
    assert h.shape == (batch_size * n_taus, hidden_size)
    h = f(h)
    assert h.ndim == 2
    assert h.shape[0] == batch_size * n_taus
    n_actions = h.shape[-1]
    h = F.reshape(h, (batch_size, n_taus, n_actions))
    return QuantileDiscreteActionValue(h) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:22,代碼來源:iqn.py

示例3: get_initial_logits

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast_to [as 別名]
def get_initial_logits(self, mb_size = None):
        if mb_size is None:
            mb_size = self.src_mb_size
        else:
            assert self.src_mb_size == 1
        assert mb_size is not None
    
        bos_encoding = F.broadcast_to(self.decoder_chain.bos_encoding, (mb_size, 1, self.decoder_chain.d_model))
        
        cross_mask = self.decoder_chain.xp.broadcast_to(self.mask_input[:,0:1,0:1,:], (self.mask_input.shape[0], self.decoder_chain.n_heads, 1, self.mask_input.shape[3]))
        
        final_layer, prev_states =  self.decoder_chain.encoding_layers.one_step(bos_encoding, None,
                                                               self.src_encoding, cross_mask)
        
        logits = self.decoder_chain.logits_layer(F.reshape(final_layer, (mb_size, self.decoder_chain.d_model)))
        return logits, DecoderState(pos=-1, prev_states=prev_states) 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:18,代碼來源:decoder.py

示例4: compute_logits

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast_to [as 別名]
def compute_logits(self, seq_list, encoded_input, mask_input):
        mb_size = len(seq_list)
        max_length_1 = max(len(x) for x in seq_list)
        x, mask = self.make_batch(seq_list)
        
#         print "padded_data", x
#         print "mask", mask
        
        assert self.xp.all(mask_input == self.xp.broadcast_to(mask_input[:,0:1,0:1,:], mask_input.shape))
        
        encoded = self.emb(x)
        encoded += self.get_pos_vect(mb_size, max_length_1)
        
        if self.dropout is not None:
            encoded = F.dropout(encoded, self.dropout)
        
        bos_plus_encoded = F.concat((F.broadcast_to(self.bos_encoding, (mb_size, 1, self.d_model)), encoded), axis=1)
        
        cross_mask = self.xp.broadcast_to(mask_input[:,0:1,0:1,:], (mask_input.shape[0], self.n_heads, bos_plus_encoded.data.shape[1], mask_input.shape[3]))
        
        final_layer =  self.encoding_layers(bos_plus_encoded, encoded_input, mask, cross_mask)
        logits = apply_linear_layer_to_last_dims(final_layer, self.logits_layer)
        return logits 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:25,代碼來源:decoder.py

示例5: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast_to [as 別名]
def __call__(self, inputs):
        pos_x, pos_y, offset_x, ego_x, ego_y, pose_x, pose_y = self._prepare_input(inputs)
        batch_size, past_len, _ = pos_x.shape

        h_pos = self.pos_encoder(pos_x)
        h_ego = self.ego_encoder(ego_x)
        h = F.concat((h_pos, h_ego), axis=1)  # (B, C, 2)
        h = self.inter(h)
        h_pos = self.pos_decoder(h)
        pred_y = self.last(h_pos)  # (B, 10, C+6+28)
        pred_y = F.swapaxes(pred_y, 1, 2)
        pred_y = pred_y[:, :pos_y.shape[1], :]
        loss = F.mean_squared_error(pred_y, pos_y)

        pred_y = pred_y + F.broadcast_to(F.expand_dims(offset_x, 1), pred_y.shape)
        pred_y = cuda.to_cpu(pred_y.data) * self._std + self._mean
        return loss, pred_y, None 
開發者ID:takumayagi,項目名稱:fpl,代碼行數:19,代碼來源:cnn.py

示例6: attend

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast_to [as 別名]
def attend(self, query, key, value, mask, minfs=None):
        """
        Input shapes:
            q=(b, units, dec_l), k=(b, units, enc_l),
            v=(b, units, dec_l, enc_l), m=(b, dec_l, enc_l)
        """

        # Calculate Attention Scores with Mask for Zero-padded Areas
        pre_a = F.batch_matmul(query, key, transa=True)  # (b, dec_l, enc_l)
        minfs = self.xp.full(pre_a.shape, -np.inf, pre_a.dtype) \
            if minfs is None else minfs
        pre_a = F.where(mask, pre_a, minfs)
        a = F.softmax(pre_a, axis=2)
        # if values in axis=2 are all -inf, they become nan. thus do re-mask.
        a = F.where(self.xp.isnan(a.data),
                    self.xp.zeros(a.shape, dtype=a.dtype), a)
        reshaped_a = a[:, None]  # (b, 1, dec_xl, enc_l)

        # Calculate Weighted Sum
        pre_c = F.broadcast_to(reshaped_a, value.shape) * value
        c = F.sum(pre_c, axis=3, keepdims=True)  # (b, units, dec_xl, 1)
        return c 
開發者ID:soskek,項目名稱:convolutional_seq2seq,代碼行數:24,代碼來源:net.py

示例7: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast_to [as 別名]
def __call__(self, x):
        N = x.shape[0]
        #Below code copyed from https://github.com/pfnet-research/chainer-gan-lib/blob/master/minibatch_discrimination/net.py
        feature = F.reshape(x, (N, -1))
        m = F.reshape(self.md(feature), (N, self.B * self.C, 1))
        m0 = F.broadcast_to(m, (N, self.B * self.C, N))
        m1 = F.transpose(m0, (2, 1, 0))
        d = F.absolute(F.reshape(m0 - m1, (N, self.B, self.C, N)))
        d = F.sum(F.exp(-F.sum(d, axis=2)), axis=2) - 1
        h = F.concat([feature, d])

        h = self.l(h)
        return h 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:15,代碼來源:block_1d.py

示例8: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast_to [as 別名]
def __call__(self, x):
        return x + F.broadcast_to(self.bias, x.shape) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:4,代碼來源:train_dqn_batch_ale.py

示例9: clip_actions

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast_to [as 別名]
def clip_actions(actions, min_action, max_action):
    min_actions = F.broadcast_to(min_action, actions.shape)
    max_actions = F.broadcast_to(max_action, actions.shape)
    return F.maximum(F.minimum(actions, max_actions), min_actions) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:6,代碼來源:distribution.py

示例10: compute_mean_and_var

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast_to [as 別名]
def compute_mean_and_var(self, x):
        h = x
        for layer in self.hidden_layers:
            h = self.nonlinearity(layer(h))
        mean = self.mean_layer(h)
        if self.bound_mean:
            mean = bound_by_tanh(mean, self.min_action, self.max_action)
        var = F.broadcast_to(F.softplus(self.var_layer(h)), mean.shape) + \
            self.min_var
        return mean, var 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:12,代碼來源:gaussian_policy.py

示例11: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast_to [as 別名]
def __call__(self, x):
        mean = self.hidden_layers(x)
        var = F.broadcast_to(self.var_func(self.var_param), mean.shape)
        return distribution.GaussianDistribution(mean, var) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:6,代碼來源:gaussian_policy.py

示例12: update_temperature

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast_to [as 別名]
def update_temperature(self, log_prob):
        assert not isinstance(log_prob, chainer.Variable)
        loss = -F.mean(
            F.broadcast_to(self.temperature_holder(), log_prob.shape)
            * (log_prob + self.entropy_target))
        self.temperature_optimizer.update(lambda: loss) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:8,代碼來源:soft_actor_critic.py

示例13: _evaluate_model_and_update_recurrent_states

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast_to [as 別名]
def _evaluate_model_and_update_recurrent_states(self, batch_obs, test):
        batch_xs = self.batch_states(batch_obs, self.xp, self.phi)
        if self.recurrent:
            if test:
                tau2av, self.test_recurrent_states = self.model(
                    batch_xs, self.test_recurrent_states)
            else:
                self.train_prev_recurrent_states = self.train_recurrent_states
                tau2av, self.train_recurrent_states = self.model(
                    batch_xs, self.train_recurrent_states)
        else:
            tau2av = self.model(batch_xs)
        if test and self.act_deterministically:
            # Instead of uniform sampling, use a deterministic sequence of
            # equally spaced numbers from 0 to 1 as quantile thresholds.
            taus_tilde = self.xp.broadcast_to(
                self.xp.linspace(
                    0, 1, num=self.quantile_thresholds_K,
                    dtype=self.xp.float32),
                (len(batch_obs), self.quantile_thresholds_K),
            )
        else:
            taus_tilde = self.xp.random.uniform(
                0, 1,
                size=(len(batch_obs), self.quantile_thresholds_K)).astype('f')
        return tau2av(taus_tilde) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:28,代碼來源:iqn.py

示例14: get_noise

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast_to [as 別名]
def get_noise(self, batch_size, ch, shape):
        xp = self.xp
        if xp != np:
            z = xp.random.normal(size=(batch_size,) + shape, dtype='f')
        else:
            # no "dtype" in kwargs for numpy.random.normal
            z = xp.random.normal(size=(batch_size,) + shape).astype('f') 
        z = xp.broadcast_to(z, (ch, batch_size,) + shape)
        z = z.transpose((1, 0, 2, 3))
        return z 
開發者ID:pfnet-research,項目名稱:chainer-stylegan,代碼行數:12,代碼來源:net.py

示例15: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast_to [as 別名]
def __call__(self, w, x=None, add_noise=False):
        h = x
        batch_size, _ = w.shape
        if self.upsample:
            assert h is not None
            if self.blur_k is None:
                k = np.asarray([1, 2, 1]).astype('f')
                k = k[:, None] * k[None, :]
                k = k / np.sum(k)
                self.blur_k = self.xp.asarray(k)[None, None, :]
            h = self.c0(upscale2x(h))
            if self.enable_blur:
                h = blur(h, self.blur_k)
        else:
            h = F.broadcast_to(self.W, (batch_size, self.ch_in, 4, 4))
      
        # h should be (batch, ch, size, size)
        if add_noise:
            h = self.n0(h)

        h = F.leaky_relu(self.b0(h))
        h = self.s0(w, h)

        h = self.c1(h)
        if add_noise:
            h = self.n1(h)

        h = F.leaky_relu(self.b1(h))
        h = self.s1(w, h)
        return h 
開發者ID:pfnet-research,項目名稱:chainer-stylegan,代碼行數:32,代碼來源:net.py


注:本文中的chainer.functions.broadcast_to方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。