當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.broadcast方法代碼示例

本文整理匯總了Python中chainer.functions.broadcast方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.broadcast方法的具體用法?Python functions.broadcast怎麽用?Python functions.broadcast使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.broadcast方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast [as 別名]
def __call__(self, x):
        h = x
        for l in self.conv_layers:
            h = self.activation(l(h))

        # Advantage
        batch_size = x.shape[0]
        ya = self.a_stream(h)
        mean = F.reshape(
            F.sum(ya, axis=1) / self.n_actions, (batch_size, 1))
        ya, mean = F.broadcast(ya, mean)
        ya -= mean

        # State value
        ys = self.v_stream(h)

        ya, ys = F.broadcast(ya, ys)
        q = ya + ys
        return action_value.DiscreteActionValue(q) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:21,代碼來源:dueling_dqn.py

示例2: proportions

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast [as 別名]
def proportions(self, doc_ids, softmax=False):
        """ Given an array of document indices, return a vector
        for each document of just the unnormalized topic weights.

        Returns:
            doc_weights : chainer.Variable
                Two dimensional topic weights of each document.
        """
        w = self.weights(doc_ids)
        if softmax:
            size = w.data.shape
            mask = self.xp.random.random_integers(0, 1, size=size)
            y = (F.softmax(w * self.temperature) *
                 Variable(mask.astype('float32')))
            norm, y = F.broadcast(F.expand_dims(F.sum(y, axis=1), 1), y)
            return y / (norm + 1e-7)
        else:
            return w 
開發者ID:cemoody,項目名稱:lda2vec,代碼行數:20,代碼來源:embed_mixture.py

示例3: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast [as 別名]
def __call__(self, adj, x):
        h = F.broadcast(x)
        # add uniform noise to node feature matrices
        if chainer.config.train:
            h += self.xp.random.uniform(0, 0.9, x.shape)
        adj = F.broadcast(adj)
        sum_log_det_jacs_x = F.broadcast(self.xp.zeros([h.shape[0]], dtype=self.xp.float32))
        sum_log_det_jacs_adj = F.broadcast(self.xp.zeros([h.shape[0]], dtype=self.xp.float32))
        # forward step of channel-coupling layers
        for i in range(self.hyperparams.num_coupling['channel']):
            h, log_det_jacobians = self.clinks[i](h, adj)
            sum_log_det_jacs_x += log_det_jacobians
        # add uniform noise to adjacency tensors
        if chainer.config.train:
            adj += self.xp.random.uniform(0, 0.9, adj.shape)
        # forward step of adjacency-coupling
        for i in range(self.hyperparams.num_coupling['channel'], len(self.clinks)):
            adj, log_det_jacobians = self.clinks[i](adj)
            sum_log_det_jacs_adj += log_det_jacobians

        adj = F.reshape(adj, (adj.shape[0], -1))
        h = F.reshape(h, (h.shape[0], -1))
        out = [h, adj]
        return out, [sum_log_det_jacs_x, sum_log_det_jacs_adj] 
開發者ID:pfnet-research,項目名稱:graph-nvp,代碼行數:26,代碼來源:model.py

示例4: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast [as 別名]
def __call__(self, x):
        h = x
        for l in self.conv_layers:
            h = self.activation(l(h))

        # Advantage
        batch_size = x.shape[0]
        ya = self.a_stream(h)
        mean = F.reshape(F.sum(ya, axis=1) / self.n_actions, (batch_size, 1))
        ya, mean = F.broadcast(ya, mean)
        ya -= mean

        # State value
        ys = self.v_stream(h)

        ya, ys = F.broadcast(ya, ys)
        q = ya + ys
        return chainerrl.action_value.DiscreteActionValue(q) 
開發者ID:minerllabs,項目名稱:baselines,代碼行數:20,代碼來源:q_functions.py

示例5: compute_eltwise_huber_quantile_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast [as 別名]
def compute_eltwise_huber_quantile_loss(y, t, taus, huber_loss_threshold=1.0):
    """Compute elementwise Huber losses for quantile regression.

    This is based on Algorithm 1 of https://arxiv.org/abs/1806.06923.

    This function assumes that, both of the two kinds of quantile thresholds,
    taus (used to compute y) and taus_prime (used to compute t) are iid samples
    from U([0,1]).

    Args:
        y (chainer.Variable): Quantile prediction from taus as a
            (batch_size, N)-shaped array.
        t (chainer.Variable or ndarray): Target values for quantile regression
            as a (batch_size, N_prime)-array.
        taus (ndarray): Quantile thresholds used to compute y as a
            (batch_size, N)-shaped array.
        huber_loss_threshold (float): Threshold of Huber loss. In the IQN
            paper, this is denoted by kappa.

    Returns:
        chainer.Variable: Loss (batch_size, N, N_prime)
    """
    assert y.shape == taus.shape
    # (batch_size, N) -> (batch_size, N, 1)
    y = F.expand_dims(y, axis=2)
    # (batch_size, N_prime) -> (batch_size, 1, N_prime)
    t = F.expand_dims(t, axis=1)
    # (batch_size, N) -> (batch_size, N, 1)
    taus = F.expand_dims(taus, axis=2)
    # Broadcast to (batch_size, N, N_prime)
    y, t, taus = F.broadcast(y, t, taus)
    I_delta = ((t.array - y.array) > 0).astype('f')
    eltwise_huber_loss = F.huber_loss(
        y, t, delta=huber_loss_threshold, reduce='no')
    eltwise_loss = abs(taus - I_delta) * eltwise_huber_loss
    return eltwise_loss 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:38,代碼來源:iqn.py

示例6: check_forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast [as 別名]
def check_forward(self, data):
        xs = [chainer.Variable(x) for x in data]
        bxs = functions.broadcast(*xs)

        # When len(xs) == 1, function returns a Variable object
        if isinstance(bxs, chainer.Variable):
            bxs = (bxs,)

        for bx in bxs:
            self.assertEqual(bx.data.shape, self.out_shape)
            self.assertEqual(bx.data.dtype, self.dtype) 
開發者ID:chainer,項目名稱:chainer,代碼行數:13,代碼來源:test_broadcast.py

示例7: check_backward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast [as 別名]
def check_backward(self, data, grads):
        def f(*xs):
            return functions.broadcast(*xs)
        gradient_check.check_backward(
            f, data, grads, dtype=numpy.float64, **self.check_backward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:7,代碼來源:test_broadcast.py

示例8: check_double_backward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast [as 別名]
def check_double_backward(self, data, grads, gg):
        if len(data) == 1:
            return

        gradient_check.check_double_backward(
            functions.broadcast, data, grads, gg, dtype=numpy.float64,
            **self.check_double_backward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:9,代碼來源:test_broadcast.py

示例9: test_invalid_shape

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast [as 別名]
def test_invalid_shape(self):
        x_data = numpy.zeros((3, 2, 5), dtype=numpy.int32)
        y_data = numpy.zeros((1, 3, 4), dtype=numpy.float32)
        x = chainer.Variable(x_data)
        y = chainer.Variable(y_data)

        with self.assertRaises(type_check.InvalidType):
            functions.broadcast(x, y) 
開發者ID:chainer,項目名稱:chainer,代碼行數:10,代碼來源:test_broadcast.py

示例10: test_invalid_shape_fill

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast [as 別名]
def test_invalid_shape_fill(self):
        x_data = numpy.zeros((3, 2, 5), dtype=numpy.int32)
        y_data = numpy.zeros(4, dtype=numpy.float32)
        x = chainer.Variable(x_data)
        y = chainer.Variable(y_data)

        with self.assertRaises(type_check.InvalidType):
            functions.broadcast(x, y) 
開發者ID:chainer,項目名稱:chainer,代碼行數:10,代碼來源:test_broadcast.py

示例11: attention_history

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast [as 別名]
def attention_history(self, dL, cue, train=True):
        D = F.concat(dL, axis=0)
        D, Cue = F.broadcast(D, cue)
        S = self.m(F.tanh(self.W_dm(D) + Cue))
        S = F.softmax(F.reshape(S, (1, len(dL))))
        pre_v = F.matmul(S, D)
        return pre_v 
開發者ID:soskek,項目名稱:der-network,代碼行數:9,代碼來源:dern.py

示例12: test

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast [as 別名]
def test(self):
        batch_size = self.batch_size
        N = self.N
        N_prime = self.N_prime
        huber_loss_threshold = self.huber_loss_threshold

        # Overestimation is penalized proportionally to tau
        # Underestimation is penalized proportionally to (1-tau)
        y = np.random.normal(size=(batch_size, N)).astype('f')
        y_var = chainer.Variable(y)
        t = np.random.normal(size=(batch_size, N_prime)).astype('f')
        tau = np.random.uniform(size=(batch_size, N)).astype('f')

        loss = iqn.compute_eltwise_huber_quantile_loss(
            y_var, t, tau, huber_loss_threshold=huber_loss_threshold)
        y_var_b, t_b = F.broadcast(
            F.reshape(y_var, (batch_size, N, 1)),
            F.reshape(t, (batch_size, 1, N_prime)),
        )
        self.assertEqual(loss.shape, (batch_size, N, N_prime))
        huber_loss = F.huber_loss(
            y_var_b, t_b, delta=huber_loss_threshold, reduce='no')
        self.assertEqual(huber_loss.shape, (batch_size, N, N_prime))

        for i in range(batch_size):
            for j in range(N):
                for k in range(N_prime):
                    # loss is always positive
                    scalar_loss = loss[i, j, k]
                    scalar_grad = chainer.grad(
                        [scalar_loss], [y_var])[0][i, j]
                    self.assertGreater(scalar_loss.array, 0)
                    if y[i, j] > t[i, k]:
                        # y over-estimates t
                        # loss equals huber loss scaled by tau
                        correct_scalar_loss = tau[i, j] * huber_loss[i, j, k]
                    else:
                        # y under-estimates t
                        # loss equals huber loss scaled by (1-tau)
                        correct_scalar_loss = (
                            (1 - tau[i, j]) * huber_loss[i, j, k])
                    correct_scalar_grad = chainer.grad(
                        [correct_scalar_loss], [y_var])[0][i, j]
                    self.assertAlmostEqual(
                        scalar_loss.array,
                        correct_scalar_loss.array,
                        places=5,
                    )
                    self.assertAlmostEqual(
                        scalar_grad.array,
                        correct_scalar_grad.array,
                        places=5,
                    ) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:55,代碼來源:test_iqn.py

示例13: lighting

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import broadcast [as 別名]
def lighting(
        faces, textures, intensity_ambient=0.5, intensity_directional=0.5, color_ambient=(1, 1, 1),
        color_directional=(1, 1, 1), direction=(0, 1, 0)):
    xp = chainer.cuda.get_array_module(faces)
    bs, nf = faces.shape[:2]

    # arguments
    if isinstance(color_ambient, tuple) or isinstance(color_ambient, list):
        color_ambient = xp.array(color_ambient, 'float32')
    if isinstance(color_directional, tuple) or isinstance(color_directional, list):
        color_directional = xp.array(color_directional, 'float32')
    if isinstance(direction, tuple) or isinstance(direction, list):
        direction = xp.array(direction, 'float32')
    if color_ambient.ndim == 1:
        color_ambient = cf.broadcast_to(color_ambient[None, :], (bs, 3))
    if color_directional.ndim == 1:
        color_directional = cf.broadcast_to(color_directional[None, :], (bs, 3))
    if direction.ndim == 1:
        direction = cf.broadcast_to(direction[None, :], (bs, 3))

    # create light
    light = xp.zeros((bs, nf, 3), 'float32')

    # ambient light
    if intensity_ambient != 0:
        light = light + intensity_ambient * cf.broadcast_to(color_ambient[:, None, :], light.shape)

    # directional light
    if intensity_directional != 0:
        faces = faces.reshape((bs * nf, 3, 3))
        v10 = faces[:, 0] - faces[:, 1]
        v12 = faces[:, 2] - faces[:, 1]
        normals = cf.normalize(neural_renderer.cross(v10, v12))
        normals = normals.reshape((bs, nf, 3))

        if direction.ndim == 2:
            direction = cf.broadcast_to(direction[:, None, :], normals.shape)
        cos = cf.relu(cf.sum(normals * direction, axis=2))
        light = (
            light + intensity_directional * cfmath.mul(*cf.broadcast(color_directional[:, None, :], cos[:, :, None])))

    # apply
    light = cf.broadcast_to(light[:, :, None, None, None, :], textures.shape)
    textures = textures * light
    return textures 
開發者ID:hiroharu-kato,項目名稱:neural_renderer,代碼行數:47,代碼來源:lighting.py


注:本文中的chainer.functions.broadcast方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。