本文整理匯總了Python中chainer.functions.batch_matmul方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.batch_matmul方法的具體用法?Python functions.batch_matmul怎麽用?Python functions.batch_matmul使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.functions
的用法示例。
在下文中一共展示了functions.batch_matmul方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: channelwise_inhibited
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import batch_matmul [as 別名]
def channelwise_inhibited(self, h):
self.c = random.randint(0, 2)
xp = cuda.get_array_module(h.data)
num = h.data.shape[0]
h = F.split_axis(h, 3, 1)
c = F.reshape(h[self.c], (num, 16, 16))
z = Variable(xp.zeros_like(c.data), 'AUTO')
c = F.batch_matmul(c, z)
c = F.reshape(c, (num, 1, 16, 16))
hs = []
for i, s in enumerate(h):
if i == self.c:
hs.append(c)
else:
hs.append(s)
return F.concat(hs, 1)
示例2: channelwise_inhibited
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import batch_matmul [as 別名]
def channelwise_inhibited(self, h):
xp = cuda.get_array_module(h.data)
num = h.data.shape[0]
h = F.split_axis(h, 3, 1)
c = F.reshape(h[self.c], (num, 16, 16))
z = Variable(xp.zeros_like(c.data), 'AUTO')
c = F.batch_matmul(c, z)
c = F.reshape(c, (num, 1, 16, 16))
hs = []
for i, s in enumerate(h):
if i == self.c:
hs.append(c)
else:
hs.append(s)
return F.concat(hs, 1)
示例3: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import batch_matmul [as 別名]
def __call__(self, inpt, mask):
mb_size = inpt.data.shape[0]
max_length = inpt.data.shape[1]
precomp = F.reshape(F.tanh(self.lin(F.reshape(inpt, (-1, self.Hi)))), (mb_size, -1, self.Ho))
mask_offset = max_length - len(mask)
precomp_mask_penalties = self.xp.concatenate(
[
self.xp.zeros((mb_size, mask_offset), dtype=self.xp.float32),
-10000 * (1 - self.xp.concatenate([
self.xp.reshape(mask_elem, (mb_size, 1)).astype(self.xp.float32) for mask_elem in mask], 1))
], 1
)
def compute_copy_coefficients(state):
betas = F.reshape(batch_matmul(precomp, state), (mb_size, -1))
masked_betas = betas + precomp_mask_penalties
return masked_betas
return compute_copy_coefficients
示例4: calc_loss_style
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import batch_matmul [as 別名]
def calc_loss_style(hout_dict,hcomp_dict,hgt_dict):
layers = hgt_dict.keys()
for i,layer_name in enumerate(layers):
B,C,H,W = hout_dict[layer_name].shape
hout = F.reshape(hout_dict[layer_name],(B,C,H*W))
hcomp = F.reshape(hcomp_dict[layer_name],(B,C,H*W))
hgt = F.reshape(hgt_dict[layer_name],(B,C,H*W))
hout_gram = F.batch_matmul(hout,hout,transb=True)
hcomp_gram = F.batch_matmul(hcomp,hcomp,transb=True)
hgt_gram = F.batch_matmul(hgt,hgt,transb=True)
if i==0:
L_style_out = F.mean_absolute_error(hout_gram,hgt_gram)/(C*H*W)
L_style_comp = F.mean_absolute_error(hcomp_gram,hgt_gram)/(C*H*W)
else:
L_style_out += F.mean_absolute_error(hout_gram,hgt_gram)/(C*H*W)
L_style_comp += F.mean_absolute_error(hcomp_gram,hgt_gram)/(C*H*W)
return L_style_out + L_style_comp
示例5: attend
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import batch_matmul [as 別名]
def attend(self, query, key, value, mask, minfs=None):
"""
Input shapes:
q=(b, units, dec_l), k=(b, units, enc_l),
v=(b, units, dec_l, enc_l), m=(b, dec_l, enc_l)
"""
# Calculate Attention Scores with Mask for Zero-padded Areas
pre_a = F.batch_matmul(query, key, transa=True) # (b, dec_l, enc_l)
minfs = self.xp.full(pre_a.shape, -np.inf, pre_a.dtype) \
if minfs is None else minfs
pre_a = F.where(mask, pre_a, minfs)
a = F.softmax(pre_a, axis=2)
# if values in axis=2 are all -inf, they become nan. thus do re-mask.
a = F.where(self.xp.isnan(a.data),
self.xp.zeros(a.shape, dtype=a.dtype), a)
reshaped_a = a[:, None] # (b, 1, dec_xl, enc_l)
# Calculate Weighted Sum
pre_c = F.broadcast_to(reshaped_a, value.shape) * value
c = F.sum(pre_c, axis=3, keepdims=True) # (b, units, dec_xl, 1)
return c
示例6: attend
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import batch_matmul [as 別名]
def attend(self, encoded_features):
self.out_lstm.reset_state()
transformed_encoded_features = F.concat([F.expand_dims(self.transform_encoded_features(feature), axis=1) for feature in encoded_features], axis=1)
concat_encoded_features = F.concat([F.expand_dims(e, axis=1) for e in encoded_features], axis=1)
lstm_output = self.xp.zeros_like(encoded_features[0])
outputs = []
for _ in range(self.num_labels):
transformed_lstm_output = self.transform_out_lstm_feature(lstm_output)
attended_feats = []
for transformed_encoded_feature in F.separate(transformed_encoded_features, axis=1):
attended_feat = transformed_encoded_feature + transformed_lstm_output
attended_feat = F.tanh(attended_feat)
attended_feats.append(self.generate_attended_feat(attended_feat))
attended_feats = F.concat(attended_feats, axis=1)
alphas = F.softmax(attended_feats, axis=1)
lstm_input_feature = F.batch_matmul(alphas, concat_encoded_features, transa=True)
lstm_input_feature = F.squeeze(lstm_input_feature, axis=1)
lstm_output = self.out_lstm(lstm_input_feature)
outputs.append(lstm_output)
return outputs
示例7: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import batch_matmul [as 別名]
def __call__(self, a_list, state, batch_size, xp):
e_list = []
sum_e = xp.zeros((batch_size, 1), dtype=xp.float32)
for a in a_list:
w = reshape(batch_matmul(state['h2'], a, transa=True), (batch_size, 1))
w.data = xp.clip(w.data, -40, 40)
e = exp(w)
e_list.append(e)
sum_e = sum_e + e
context = xp.zeros((batch_size, self.hidden_size), dtype=xp.float32)
for a, e in zip(a_list, e_list):
e /= sum_e
context = context + reshape(batch_matmul(a, e), (batch_size, self.hidden_size))
return context, e_list, sum_e
示例8: extract_style_feature
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import batch_matmul [as 別名]
def extract_style_feature(self, images, masks=None):
xp = self.xp
mean = xp.array([103.939, 116.779, 123.68], 'float32') # BGR
images = images[:, ::-1] * 255 - mean[None, :, None, None]
features = self.vgg16(images, layers=['conv1_2', 'conv2_2', 'conv3_3', 'conv4_3']).values()
if masks is None:
masks = xp.ones((images.shape[0], images.shape[2], images.shape[3]))
style_features = []
for feature in features:
scale = masks.shape[-1] / feature.shape[-1]
m = cf.average_pooling_2d(masks[:, None, :, :], scale, scale).data
dim = feature.shape[1]
m = m.reshape((m.shape[0], -1))
f2 = feature.transpose((0, 2, 3, 1))
f2 = f2.reshape((f2.shape[0], -1, f2.shape[-1]))
f2 *= xp.sqrt(m)[:, :, None]
f2 = cf.batch_matmul(f2.transpose((0, 2, 1)), f2)
f2 /= dim * m.sum(axis=1)[:, None, None]
style_features.append(f2)
return style_features
示例9: extract_features
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import batch_matmul [as 別名]
def extract_features(vgg16, images, masks=None):
mean = cp.array([103.939, 116.779, 123.68], 'float32') # BGR
images = images[:, ::-1] * 255 - mean[None, :, None, None]
features = vgg16(images, layers=['conv1_2', 'conv2_2', 'conv3_3', 'conv4_3']).values()
if masks is None:
masks = cp.ones((images.shape[0], images.shape[2], images.shape[3]), 'float32')
else:
masks = masks.data
style_features = []
for f in features:
scale = masks.shape[-1] / f.shape[-1]
m = cf.average_pooling_2d(masks[:, None, :, :], scale, scale).data
dim = f.shape[1]
m = m.reshape((m.shape[0], -1))
f2 = f.transpose((0, 2, 3, 1))
f2 = f2.reshape((f2.shape[0], -1, f2.shape[-1]))
f2 *= cp.sqrt(m)[:, :, None]
f2 = cf.batch_matmul(f2.transpose((0, 2, 1)), f2)
f2 /= dim * m.sum(axis=1)[:, None, None]
style_features.append(f2)
return style_features
示例10: batch_matmul
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import batch_matmul [as 別名]
def batch_matmul(a, b, transa=False, transb=False):
return F.matmul(a[:, :, None], b, transa=transa, transb=transb)
示例11: compute_ctxt_demux
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import batch_matmul [as 別名]
def compute_ctxt_demux(self, fb_concat, mask):
mb_size, nb_elems, Hi = fb_concat.data.shape
assert Hi == self.Hi
assert mb_size == 1
assert len(mask) == 0
precomputed_al_factor = F.reshape(self.al_lin_h(
F.reshape(fb_concat, (mb_size * nb_elems, self.Hi))), (mb_size, nb_elems, self.Ha))
# concatenated_mask = F.concat([F.reshape(mask_elem, (mb_size, 1)) for mask_elem in mask], 1)
def compute_ctxt(previous_state, prev_word_embedding=None):
current_mb_size = previous_state.data.shape[0]
al_factor = F.broadcast_to(precomputed_al_factor, (current_mb_size, nb_elems, self.Ha))
# used_fb_concat = F.broadcast_to(fb_concat, (current_mb_size, nb_elems, Hi))
# used_concatenated_mask = F.broadcast_to(concatenated_mask, (current_mb_size, nb_elems))
state_al_factor = self.al_lin_s(previous_state)
#As suggested by Isao Goto
if prev_word_embedding is not None:
state_al_factor = state_al_factor + self.al_lin_y(prev_word_embedding)
state_al_factor_bc = F.broadcast_to(F.reshape(state_al_factor, (current_mb_size, 1, self.Ha)), (current_mb_size, nb_elems, self.Ha))
a_coeffs = F.reshape(self.al_lin_o(F.reshape(F.tanh(state_al_factor_bc + al_factor),
(current_mb_size * nb_elems, self.Ha))), (current_mb_size, nb_elems))
# with cuda.get_device_from_array(used_concatenated_mask.data):
# a_coeffs = a_coeffs - 10000 * (1-used_concatenated_mask.data)
attn = F.softmax(a_coeffs)
# ci = F.reshape(F.batch_matmul(attn, used_fb_concat, transa = True), (current_mb_size, self.Hi))
ci = F.reshape(F.matmul(attn, F.reshape(fb_concat, (nb_elems, Hi))), (current_mb_size, self.Hi))
return ci, attn
return compute_ctxt
示例12: compute_logits
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import batch_matmul [as 別名]
def compute_logits(self, new_states, concatenated, attn):
new_output_state = new_states[-1]
all_concatenated = F.concat((concatenated, new_output_state))
logits = self.decoder_chain.lin_o(self.decoder_chain.maxo(all_concatenated))
if self.lexicon_probability_matrix is not None:
current_mb_size = new_output_state.data.shape[0]
assert self.mb_size is None or current_mb_size <= self.mb_size
lexicon_probability_matrix = self.lexicon_probability_matrix[:current_mb_size]
# Just making sure data shape is as expected
attn_mb_size, max_source_length_attn = attn.data.shape
assert attn_mb_size == current_mb_size
lex_mb_size, max_source_length_lexicon, v_size_lexicon = lexicon_probability_matrix.shape
assert max_source_length_lexicon == max_source_length_attn
assert logits.data.shape == (current_mb_size, v_size_lexicon)
if self.demux:
assert lex_mb_size == 1
weighted_lex_probs = F.reshape(
matmul_constant(attn, lexicon_probability_matrix.reshape(lexicon_probability_matrix.shape[1],
lexicon_probability_matrix.shape[2])),
logits.data.shape)
else:
assert lex_mb_size == current_mb_size
# weighted_lex_probs = F.reshape(
# F.batch_matmul(attn, ConstantFunction(lexicon_probability_matrix)(), transa = True),
# logits.data.shape)
weighted_lex_probs = F.reshape(
batch_matmul_constant(attn, lexicon_probability_matrix, transa=True),
logits.data.shape)
logits += F.log(weighted_lex_probs + self.lex_epsilon)
return logits
示例13: batch_matmul_last_dims
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import batch_matmul [as 別名]
def batch_matmul_last_dims(A, B, transa=False, transb=False):
assert A.data.shape[:-2] == B.data.shape[:-2]
reshaped_A = F.reshape(A, (-1,) + A.data.shape[-2:])
reshaped_B = F.reshape(B, (-1,) + B.data.shape[-2:])
reshaped_result = F.batch_matmul(reshaped_A, reshaped_B, transa=transa, transb=transb)
result = F.reshape(reshaped_result, A.data.shape[:-2] + reshaped_result.data.shape[-2:])
return result
########################################################################
# Multihead Attention
#
示例14: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import batch_matmul [as 別名]
def forward(self, inputs, device):
x1, x2 = inputs
with testing.assert_warns(DeprecationWarning):
y = F.batch_matmul(
x1, x2, transa=self.transa, transb=self.transb)
return y,
示例15: query
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import batch_matmul [as 別名]
def query(self, u):
xp = backend.get_array_module(u)
size = self.m.shape[1]
inds = xp.arange(size - 1, -1, -1, dtype=numpy.int32)
tm = self.TA(inds)
tc = self.TC(inds)
tm = F.broadcast_to(tm, self.m.shape)
tc = F.broadcast_to(tc, self.c.shape)
p = F.softmax(F.batch_matmul(self.m + tm, u))
o = F.batch_matmul(F.swapaxes(self.c + tc, 2, 1), p)
o = F.squeeze(o, -1)
u = o + u
return u