本文整理匯總了Python中chainer.functions.average_pooling_2d方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.average_pooling_2d方法的具體用法?Python functions.average_pooling_2d怎麽用?Python functions.average_pooling_2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.functions
的用法示例。
在下文中一共展示了functions.average_pooling_2d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average_pooling_2d [as 別名]
def forward(self, x, t):
h = self.bn1(self.conv1(x))
h = F.max_pooling_2d(F.relu(h), 3, stride=2)
h = self.res2(h)
h = self.res3(h)
h = self.res4(h)
h = self.res5(h)
h = F.average_pooling_2d(h, 7, stride=1)
h = self.fc(h)
#loss = F.softmax_cross_entropy(h, t)
loss = self.softmax_cross_entropy(h, t)
if self.compute_accuracy:
chainer.report({'loss': loss, 'accuracy': F.accuracy(h, np.argmax(t, axis=1))}, self)
else:
chainer.report({'loss': loss}, self)
return loss
示例2: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average_pooling_2d [as 別名]
def __call__(self, x):
y = self.branches(x)
u = F.sum(y, axis=1)
s = F.average_pooling_2d(u, ksize=u.shape[2:])
z = self.fc1(s)
w = self.fc2(z)
batch = w.shape[0]
w = F.reshape(w, shape=(batch, self.num_branches, self.out_channels))
w = self.softmax(w)
w = F.expand_dims(F.expand_dims(w, axis=3), axis=4)
y = y * w
y = F.sum(y, axis=1)
return y
示例3: __init__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average_pooling_2d [as 別名]
def __init__(self,
in_channels,
out_channels,
stride,
dilate=1,
**kwargs):
super(ResADownBlock, self).__init__(**kwargs)
with self.init_scope():
# self.pool = partial(
# F.average_pooling_2d,
# ksize=(stride if dilate == 1 else 1),
# stride=(stride if dilate == 1 else 1))
self.pool = partial(
F.average_pooling_nd,
ksize=(stride if dilate == 1 else 1),
stride=(stride if dilate == 1 else 1),
pad_value=None)
self.conv = conv1x1_block(
in_channels=in_channels,
out_channels=out_channels,
activation=None)
示例4: __init__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average_pooling_2d [as 別名]
def __init__(self,
in_channels,
out_channels,
stride):
super(ShakeShakeShortcut, self).__init__()
assert (out_channels % 2 == 0)
mid_channels = out_channels // 2
with self.init_scope():
self.pool = partial(
F.average_pooling_2d,
ksize=1,
stride=stride)
self.conv1 = conv1x1(
in_channels=in_channels,
out_channels=mid_channels)
self.conv2 = conv1x1(
in_channels=in_channels,
out_channels=mid_channels)
self.bn = L.BatchNormalization(
size=out_channels,
eps=1e-5)
示例5: __init__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average_pooling_2d [as 別名]
def __init__(self,
in_channels,
out_channels,
stride,
binarized=False):
super(PreResUnit1bit, self).__init__()
self.resize_identity = (stride != 1)
with self.init_scope():
self.body = PreResBlock1bit(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
binarized=binarized)
if self.resize_identity:
self.identity_pool = partial(
F.average_pooling_2d,
ksize=3,
stride=2,
pad=1)
示例6: _downsample
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average_pooling_2d [as 別名]
def _downsample(x):
return F.average_pooling_2d(x, 2)
示例7: _downsample_frq
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average_pooling_2d [as 別名]
def _downsample_frq(x):
return F.average_pooling_2d(x, (1,2))
示例8: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average_pooling_2d [as 別名]
def __call__(self, x, v):
out = super().__call__(x, v)
out = cf.average_pooling_2d(out, self.r_size)
return out
示例9: downscale2x
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average_pooling_2d [as 別名]
def downscale2x(h):
return F.average_pooling_2d(h, 2, 2, 0)
示例10: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average_pooling_2d [as 別名]
def __call__(self, x):
return F.average_pooling_2d(x, self.ksize, self.stride, self.pad)
示例11: global_average_pooling_2d
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average_pooling_2d [as 別名]
def global_average_pooling_2d(x, use_cudnn=True):
"""Spatial global average pooling function.
Args:
x (~chainer.Variable): Input variable.
use_cudnn (bool): If ``True`` and cuDNN is enabled, then this function
uses cuDNN as the core implementation.
"""
return F.average_pooling_2d(x, ksize=(x.shape[2], x.shape[3]), use_cudnn=use_cudnn)
示例12: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average_pooling_2d [as 別名]
def forward(self, x, t):
h = self.bn1(self.conv1(x))
h = F.max_pooling_2d(F.relu(h), 3, stride=2)
h = self.res2(h)
h = self.res3(h)
h = self.res4(h)
h = self.res5(h)
h = F.average_pooling_2d(h, 7, stride=1)
h = self.fc(h)
loss = F.softmax_cross_entropy(h, t)
# chainer.report({'loss': loss, 'accuracy': F.accuracy(h, t)}, self)
return loss
# from https://github.com/chainer/chainer/blob/master/examples/imagenet/resnet50.py
示例13: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average_pooling_2d [as 別名]
def forward(self, x):
y1 = F.average_pooling_2d(x, (1, 3), stride=(1, 4))
return y1
示例14: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average_pooling_2d [as 別名]
def forward(self, x):
y1 = F.average_pooling_2d(x, 1, stride=2)
return y1
示例15: __init__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average_pooling_2d [as 別名]
def __init__(self,
channels,
init_block_channels,
in_channels=3,
in_size=(224, 224),
classes=1000):
super(SKNet, self).__init__()
self.in_size = in_size
self.classes = classes
with self.init_scope():
self.features = SimpleSequential()
with self.features.init_scope():
setattr(self.features, "init_block", ResInitBlock(
in_channels=in_channels,
out_channels=init_block_channels))
in_channels = init_block_channels
for i, channels_per_stage in enumerate(channels):
stage = SimpleSequential()
with stage.init_scope():
for j, out_channels in enumerate(channels_per_stage):
stride = 2 if (j == 0) and (i != 0) else 1
setattr(stage, "unit{}".format(j + 1), SKNetUnit(
in_channels=in_channels,
out_channels=out_channels,
stride=stride))
in_channels = out_channels
setattr(self.features, "stage{}".format(i + 1), stage)
setattr(self.features, "final_pool", partial(
F.average_pooling_2d,
ksize=7,
stride=1))
self.output = SimpleSequential()
with self.output.init_scope():
setattr(self.output, "flatten", partial(
F.reshape,
shape=(-1, in_channels)))
setattr(self.output, "fc", L.Linear(
in_size=in_channels,
out_size=classes))