本文整理匯總了Python中chainer.functions.average方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.average方法的具體用法?Python functions.average怎麽用?Python functions.average使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.functions
的用法示例。
在下文中一共展示了functions.average方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average [as 別名]
def __init__(self, vocab, vocab_ngram_tokens, n_units, n_units_char, dropout,
subword): # dropout ratio, zero indicates no dropout
super(SUMAVG, self).__init__()
with self.init_scope():
if subword.startswith('sum'):
self.f_sumavg = F.sum
if subword.startswith('avg'):
self.f_sumavg = F.average
self.embed = L.EmbedID(
len(vocab_ngram_tokens.lst_words) + 2, n_units_char,
initialW=I.Uniform(1. / n_units_char)) # ngram tokens embedding plus 2 for OOV and end symbol.
self.n_ngram = vocab_ngram_tokens.metadata["max_gram"] - vocab_ngram_tokens.metadata["min_gram"] + 1
self.dropout = dropout
self.vocab = vocab
self.vocab_ngram_tokens = vocab_ngram_tokens
示例2: forward_expected
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average [as 別名]
def forward_expected(self, inputs):
x, w = inputs
if not self.use_weights:
w = None
y_expect = numpy.average(x, axis=self.axis, weights=w)
if self.keepdims:
# numpy.average does not support keepdims
axis = self.axis
if axis is None:
axis = list(six.moves.range(x.ndim))
elif isinstance(axis, int):
axis = axis,
shape = list(x.shape)
for i in six.moves.range(len(shape)):
if i in axis or i - len(shape) in axis:
shape[i] = 1
y_expect = y_expect.reshape(shape)
y_expect = utils.force_array(y_expect, dtype=self.dtype)
return y_expect,
示例3: scale_layer
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average [as 別名]
def scale_layer(self, feature_map, node):
input_data = node.inputs[0].data
_, _, in_height, in_width = input_data.shape
_, _, feature_height, feature_width = feature_map.shape
kernel_height = in_height + 2 * node.ph - node.sy * (feature_height - 1)
kernel_width = in_width + 2 * node.pw - node.sx * (feature_width - 1)
scaled_feature = F.deconvolution_2d(
feature_map,
self.xp.ones((1, 1, kernel_height, kernel_width)),
stride=(node.sy, node.sx),
pad=(node.ph, node.pw),
outsize=(in_height, in_width),
)
averaged_feature_map = F.average(input_data, axis=1, keepdims=True)
feature_map = scaled_feature * averaged_feature_map
return feature_map
示例4: log_prob
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average [as 別名]
def log_prob(self, z, logdet):
logdet[0] = logdet[0] - self.x_size
logdet[1] = logdet[1] - self.adj_size
ln_var_adj = self.ln_var * self.xp.ones([self.adj_size])
ln_var_x = self.ln_var * self.xp.ones([self.x_size])
nll_adj = F.average(F.sum(F.gaussian_nll(z[1], self.xp.zeros([self.adj_size], dtype=self.xp.float32),
ln_var_adj, reduce='no'), axis=1) - logdet[1])
nll_adj /= self.adj_size
nll_x = F.average(F.sum(F.gaussian_nll(z[0], self.xp.zeros([self.x_size], dtype=self.xp.float32),
ln_var_x, reduce='no'), axis=1) - logdet[0])
nll_x /= self.x_size
if nll_x.array < 0:
print('nll_x:{}'.format(nll_x))
return [nll_x, nll_adj]
示例5: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average [as 別名]
def __call__(self, x):
h = F.leaky_relu(self.conv1(x), self.slope)
h = F.leaky_relu(self.conv2(h), self.slope)
if hasattr(self, 'conv_bridge'):
x = self.conv_bridge(x[:, :, 2:-2, 2:-2])
else:
x = x[:, :, 2:-2, 2:-2]
if hasattr(self, 'fc1') and hasattr(self, 'fc2'):
se = F.relu(self.fc1(F.average(h, axis=(2, 3))))
se = F.sigmoid(self.fc2(se))[:, :, None, None]
se = F.broadcast_to(se, h.shape)
h = h * se
return h + x
示例6: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average [as 別名]
def forward(self, u):
B, C, H, W = u.shape
z = F.average(u, axis=(2, 3))
x = F.relu(self.down(z))
x = F.sigmoid(self.up(x))
x = F.reshape(x, x.shape[:2] + (1, 1))
# Spatial axes of `x` will be broadcasted.
return u * x
示例7: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average [as 別名]
def forward(self, inputs, device):
x, w = inputs
if not self.use_weights:
w = None
if self.use_variable_method:
y = x.mean(axis=self.axis, weights=w, keepdims=self.keepdims)
else:
y = functions.average(
x, axis=self.axis, weights=w, keepdims=self.keepdims)
return y,
示例8: test_duplicate_value
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average [as 別名]
def test_duplicate_value(self):
x = numpy.random.uniform(-1, 1, 24).reshape(2, 3, 4).astype(self.dtype)
with self.assertRaises(ValueError):
functions.average(x, axis=(0, 0))
示例9: test_duplicate_value_negative
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average [as 別名]
def test_duplicate_value_negative(self):
x = numpy.random.uniform(-1, 1, 24).reshape(2, 3, 4).astype(self.dtype)
with self.assertRaises(ValueError):
functions.average(x, axis=(1, -2))
示例10: calc_direction_loss
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average [as 別名]
def calc_direction_loss(self, grids):
top_left_x, top_right_x, _, top_left_y, _, bottom_left_y = self.get_corners(grids)
# penalize upside down images
distance = top_left_y - bottom_left_y
loss_values = F.maximum(distance, self.xp.zeros_like(distance))
up_down_loss = F.average(loss_values)
# penalize images that are vertically mirrored
distance = top_left_x - top_right_x
loss_values = F.maximum(distance, self.xp.zeros_like(distance))
left_right_loss = F.average(loss_values)
return up_down_loss + left_right_loss
示例11: calc_height_loss
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average [as 別名]
def calc_height_loss(self, height):
# penalize bboxes that are not high enough to contain text (10 pixels)
shifted_height = height - 10
thresholded_height = F.minimum(shifted_height, self.xp.zeros_like(shifted_height))
thresholded_height *= -1
return F.average(thresholded_height)
示例12: perform_visual_backprop
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average [as 別名]
def perform_visual_backprop(self, variable):
with chainer.no_backprop_mode(), chainer.cuda.get_device_from_array(variable.data):
self.xp = cuda.get_array_module(variable)
averaged_feature = F.average(variable, axis=1, keepdims=True)
visualization = self.traverse_computational_graph(variable.creator, averaged_feature)
visualization = visualization.data
for i in range(len(visualization)):
min_val = visualization[i].min()
max_val = visualization[i].max()
visualization[i] -= min_val
visualization[i] *= 1.0 / (max_val - min_val)
return visualization
示例13: _pool
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average [as 別名]
def _pool(
self, h_cls_seg, h_ag_loc, rois, roi_indices, gt_roi_labels):
# PSROI Pooling
# shape: (n_roi, n_class, 2, roi_size, roi_size)
roi_cls_ag_seg_scores = ps_roi_average_pooling_2d(
h_cls_seg, rois, roi_indices,
(self.n_class * 2, self.roi_size, self.roi_size),
self.spatial_scale, self.group_size)
roi_cls_ag_seg_scores = F.reshape(
roi_cls_ag_seg_scores,
(-1, self.n_class, 2, self.roi_size, self.roi_size))
# shape: (n_roi, 2*4, roi_size, roi_size)
roi_ag_loc_scores = ps_roi_average_pooling_2d(
h_ag_loc, rois, roi_indices,
(2 * 4, self.roi_size, self.roi_size),
self.spatial_scale, self.group_size)
# shape: (n_roi, n_class)
roi_cls_scores = F.average(
F.max(roi_cls_ag_seg_scores, axis=2), axis=(2, 3))
# Bbox Regression
# shape: (n_roi, 2, 4)
roi_ag_locs = F.average(roi_ag_loc_scores, axis=(2, 3))
roi_ag_locs = F.reshape(roi_ag_locs, (-1, 2, 4))
# Mask Regression
# shape: (n_roi, n_class, 2, roi_size, roi_size)
if gt_roi_labels is None:
max_cls_indices = roi_cls_scores.array.argmax(axis=1)
else:
max_cls_indices = gt_roi_labels
# shape: (n_roi, 2, roi_size, roi_size)
roi_ag_seg_scores = roi_cls_ag_seg_scores[
self.xp.arange(len(max_cls_indices)), max_cls_indices]
return roi_ag_seg_scores, roi_ag_locs, roi_cls_scores
示例14: __init__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average [as 別名]
def __init__(self, n_layer,
n_class=None,
pretrained_model=None,
mean=None, initialW=None, fc_kwargs={}):
blocks = self._blocks[n_layer]
param, path = utils.prepare_pretrained_model(
{'n_class': n_class, 'mean': mean},
pretrained_model, self._models[n_layer],
{'n_class': 1000, 'mean': _imagenet_mean})
self.mean = param['mean']
if initialW is None:
initialW = initializers.HeNormal(scale=1., fan_option='fan_out')
if 'initialW' not in fc_kwargs:
fc_kwargs['initialW'] = initializers.Normal(scale=0.01)
if pretrained_model:
# As a sampling process is time-consuming,
# we employ a zero initializer for faster computation.
initialW = initializers.constant.Zero()
fc_kwargs['initialW'] = initializers.constant.Zero()
kwargs = {
'initialW': initialW, 'stride_first': True, 'add_seblock': True}
super(SEResNet, self).__init__()
with self.init_scope():
self.conv1 = Conv2DBNActiv(None, 64, 7, 2, 3, nobias=True,
initialW=initialW)
self.pool1 = lambda x: F.max_pooling_2d(x, ksize=3, stride=2)
self.res2 = ResBlock(blocks[0], None, 64, 256, 1, **kwargs)
self.res3 = ResBlock(blocks[1], None, 128, 512, 2, **kwargs)
self.res4 = ResBlock(blocks[2], None, 256, 1024, 2, **kwargs)
self.res5 = ResBlock(blocks[3], None, 512, 2048, 2, **kwargs)
self.pool5 = lambda x: F.average(x, axis=(2, 3))
self.fc6 = L.Linear(None, param['n_class'], **fc_kwargs)
self.prob = F.softmax
if path:
chainer.serializers.load_npz(path, self)
示例15: __init__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import average [as 別名]
def __init__(self, n_layer,
n_class=None,
pretrained_model=None,
mean=None, initialW=None, fc_kwargs={}):
blocks = self._blocks[n_layer]
param, path = utils.prepare_pretrained_model(
{'n_class': n_class, 'mean': mean},
pretrained_model, self._models[n_layer],
{'n_class': 1000, 'mean': _imagenet_mean})
self.mean = param['mean']
if initialW is None:
initialW = initializers.HeNormal(scale=1., fan_option='fan_out')
if 'initialW' not in fc_kwargs:
fc_kwargs['initialW'] = initializers.Normal(scale=0.01)
if pretrained_model:
# As a sampling process is time-consuming,
# we employ a zero initializer for faster computation.
initialW = initializers.constant.Zero()
fc_kwargs['initialW'] = initializers.constant.Zero()
kwargs = {
'groups': 32, 'initialW': initialW, 'stride_first': False,
'add_seblock': True}
super(SEResNeXt, self).__init__()
with self.init_scope():
self.conv1 = Conv2DBNActiv(None, 64, 7, 2, 3, nobias=True,
initialW=initialW)
self.pool1 = lambda x: F.max_pooling_2d(x, ksize=3, stride=2)
self.res2 = ResBlock(blocks[0], None, 128, 256, 1, **kwargs)
self.res3 = ResBlock(blocks[1], None, 256, 512, 2, **kwargs)
self.res4 = ResBlock(blocks[2], None, 512, 1024, 2, **kwargs)
self.res5 = ResBlock(blocks[3], None, 1024, 2048, 2, **kwargs)
self.pool5 = lambda x: F.average(x, axis=(2, 3))
self.fc6 = L.Linear(None, param['n_class'], **fc_kwargs)
self.prob = F.softmax
if path:
chainer.serializers.load_npz(path, self)