本文整理匯總了Python中chainer.functions.argmax方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.argmax方法的具體用法?Python functions.argmax怎麽用?Python functions.argmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.functions
的用法示例。
在下文中一共展示了functions.argmax方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import argmax [as 別名]
def __call__(self, x):
heatmap = x
vector_dim = 2
batch = heatmap.shape[0]
channels = heatmap.shape[1]
in_size = x.shape[2:]
heatmap_vector = F.reshape(heatmap, shape=(batch, channels, -1))
indices = F.cast(F.expand_dims(F.argmax(heatmap_vector, axis=vector_dim), axis=vector_dim), np.float32)
scores = F.max(heatmap_vector, axis=vector_dim, keepdims=True)
scores_mask = (scores.array > 0.0).astype(np.float32)
pts_x = (indices.array % in_size[1]) * scores_mask
pts_y = (indices.array // in_size[1]) * scores_mask
pts = F.concat((pts_x, pts_y, scores), axis=vector_dim).array
for b in range(batch):
for k in range(channels):
hm = heatmap[b, k, :, :].array
px = int(pts_x[b, k])
py = int(pts_y[b, k])
if (0 < px < in_size[1] - 1) and (0 < py < in_size[0] - 1):
pts[b, k, 0] += np.sign(hm[py, px + 1] - hm[py, px - 1]) * 0.25
pts[b, k, 1] += np.sign(hm[py + 1, px] - hm[py - 1, px]) * 0.25
return pts
示例2: update
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import argmax [as 別名]
def update(Q, target_Q, opt, samples, gamma=0.99, target_type='double_dqn'):
"""Update a Q-function with given samples and a target Q-function."""
dtype = chainer.get_dtype()
xp = Q.xp
obs = xp.asarray([sample[0] for sample in samples], dtype=dtype)
action = xp.asarray([sample[1] for sample in samples], dtype=np.int32)
reward = xp.asarray([sample[2] for sample in samples], dtype=dtype)
done = xp.asarray([sample[3] for sample in samples], dtype=dtype)
obs_next = xp.asarray([sample[4] for sample in samples], dtype=dtype)
# Predicted values: Q(s,a)
y = F.select_item(Q(obs), action)
# Target values: r + gamma * max_b Q(s',b)
with chainer.no_backprop_mode():
if target_type == 'dqn':
next_q = F.max(target_Q(obs_next), axis=1)
elif target_type == 'double_dqn':
next_q = F.select_item(target_Q(obs_next),
F.argmax(Q(obs_next), axis=1))
else:
raise ValueError('Unsupported target_type: {}'.format(target_type))
target = reward + gamma * (1 - done) * next_q
loss = mean_clipped_loss(y, target)
Q.cleargrads()
loss.backward()
opt.update()
示例3: determine_best_prediction_indices
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import argmax [as 別名]
def determine_best_prediction_indices(self, raw_classification_result):
distribution = F.softmax(raw_classification_result, axis=3)
predicted_classes = F.argmax(distribution, axis=3)
scores = []
for i, image in enumerate(predicted_classes):
means = []
for j, image_variant in enumerate(image):
num_predictions = len([prediction for prediction in image_variant if prediction.array != self.blank_label_class])
probs = F.max(distribution[i, j, :num_predictions], axis=1).array
if len(probs) == 0:
means.append(self.xp.array(0, dtype=probs.dtype))
means.append(self.xp.mean(probs))
means = self.xp.stack(means, axis=0)
scores.append(means)
scores = self.xp.stack(scores, axis=0)
# scores = F.sum(F.max(F.softmax(raw_classification_result, axis=3), axis=3), axis=2)
best_indices = F.argmax(scores, axis=1).array
best_indices = best_indices[:, self.xp.newaxis]
return best_indices, scores
示例4: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import argmax [as 別名]
def forward(self, v1):
return F.argmax(v1)
示例5: main
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import argmax [as 別名]
def main():
np.random.seed(314)
a1 = np.random.rand(6, 2, 3).astype(np.float32)
testtools.generate_testcase(ArgMin(), [a1], subname='argmin')
testtools.generate_testcase(ArgMinNumpy(), [a1], subname='argmin_np')
testtools.generate_testcase(ArgMinAxis(), [a1], subname='argmin_axis')
testtools.generate_testcase(ArgMinAxisNumpy(), [a1], subname='argmin_axis_np')
testtools.generate_testcase(ArgMax(), [a1], subname='argmax')
testtools.generate_testcase(ArgMaxNumpy(), [a1], subname='argmax_np')
testtools.generate_testcase(ArgMaxAxis(), [a1], subname='argmax_axis')
testtools.generate_testcase(ArgMaxAxisNumpy(), [a1], subname='argmax_axis_np')
示例6: get_greedy_action
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import argmax [as 別名]
def get_greedy_action(Q, obs):
"""Get a greedy action wrt a given Q-function."""
dtype = chainer.get_dtype()
obs = Q.xp.asarray(obs[None], dtype=dtype)
with chainer.no_backprop_mode():
q = Q(obs).array[0]
return int(q.argmax())
示例7: decode_prediction
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import argmax [as 別名]
def decode_prediction(self, x):
"""
helper function for greedy decoding
:param x: the output of the classifier
:return: the most probable class index
"""
return F.argmax(F.softmax(x, axis=2), axis=2)
示例8: argmax
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import argmax [as 別名]
def argmax(self, hs_pad):
"""argmax of frame activations
:param chainer variable hs_pad: 3d tensor (B, Tmax, eprojs)
:return: argmax applied 2d tensor (B, Tmax)
:rtype: chainer.Variable
"""
return F.argmax(self.ctc_lo(F.pad_sequence(hs_pad), n_batch_axes=2), axis=-1)
示例9: argmax
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import argmax [as 別名]
def argmax(self, hs_pad):
"""Argmax of frame activations.
:param chainer variable hs_pad: 3d tensor (B, Tmax, eprojs)
:return: argmax applied 2d tensor (B, Tmax)
:rtype: chainer.Variable.
"""
return F.argmax(self.ctc_lo(F.pad_sequence(hs_pad), n_batch_axes=2), axis=-1)
示例10: decode_prediction
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import argmax [as 別名]
def decode_prediction(self, prediction):
return F.argmax(F.softmax(prediction, axis=2), axis=2)
示例11: decode_prediction
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import argmax [as 別名]
def decode_prediction(self, prediction):
words = []
for box in F.separate(prediction, axis=1):
word = [F.argmax(F.softmax(character), axis=1) for character in F.separate(box, axis=1)]
words.append(F.stack(word, axis=1))
return F.stack(words, axis=1)
示例12: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import argmax [as 別名]
def __call__(self, x_img, t_detection, **others):
# Alexnet
h = F.relu(self.conv1(x_img)) # conv1
h = F.max_pooling_2d(h, 3, stride=2, pad=0) # max1
h = F.local_response_normalization(h) # norm1
h = F.relu(self.conv2(h)) # conv2
h = F.max_pooling_2d(h, 3, stride=2, pad=0) # max2
h = F.local_response_normalization(h) # norm2
h = F.relu(self.conv3(h)) # conv3
h = F.relu(self.conv4(h)) # conv4
h = F.relu(self.conv5(h)) # conv5
h = F.max_pooling_2d(h, 3, stride=2, pad=0) # pool5
h = F.dropout(F.relu(self.fc6(h)), train=self.train) # fc6
h = F.dropout(F.relu(self.fc7(h)), train=self.train) # fc7
h_detection = self.fc8(h) # fc8
# Loss
loss = F.softmax_cross_entropy(h_detection, t_detection)
chainer.report({'loss': loss}, self)
# Prediction
h_detection = F.argmax(h_detection, axis=1)
# Report results
predict_data = {'img': x_img, 'detection': h_detection}
teacher_data = {'img': x_img, 'detection': t_detection}
chainer.report({'predict': predict_data}, self)
chainer.report({'teacher': teacher_data}, self)
# Report layer weights
chainer.report({'conv1_w': {'weights': self.conv1.W},
'conv2_w': {'weights': self.conv2.W},
'conv3_w': {'weights': self.conv3.W},
'conv4_w': {'weights': self.conv4.W},
'conv5_w': {'weights': self.conv5.W}}, self)
return loss
示例13: set_init_grad
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import argmax [as 別名]
def set_init_grad(self, var, label):
var.grad = self.xp.zeros_like(var.data)
if label is None:
class_id = F.argmax(var).data
var.grad[0][class_id] = 1
else:
class_id = self.xp.random.choice(label, 1)
var.grad[0][class_id] = 1
return class_id