當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.absolute方法代碼示例

本文整理匯總了Python中chainer.functions.absolute方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.absolute方法的具體用法?Python functions.absolute怎麽用?Python functions.absolute使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.absolute方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import absolute [as 別名]
def __call__(self, x):
        if self.dr:
            with chainer.using_config('train', True):
                x = F.dropout(x, self.dr)
        if self.gap:
            x = F.sum(x, axis=(2,3))
        N = x.shape[0]
        #Below code copyed from https://github.com/pfnet-research/chainer-gan-lib/blob/master/minibatch_discrimination/net.py
        feature = F.reshape(F.leaky_relu(x), (N, -1))
        m = F.reshape(self.md(feature), (N, self.B * self.C, 1))
        m0 = F.broadcast_to(m, (N, self.B * self.C, N))
        m1 = F.transpose(m0, (2, 1, 0))
        d = F.absolute(F.reshape(m0 - m1, (N, self.B, self.C, N)))
        d = F.sum(F.exp(-F.sum(d, axis=2)), axis=2) - 1
        h = F.concat([feature, d])

        h = self.l(h)
        return h 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:20,代碼來源:block.py

示例2: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import absolute [as 別名]
def __call__(self, x):
        N = x.data.shape[0]
        h = F.leaky_relu(self.c0_0(x))
        h = F.leaky_relu(self.bn0_1(self.c0_1(h)))
        h = F.leaky_relu(self.bn1_0(self.c1_0(h)))
        h = F.leaky_relu(self.bn1_1(self.c1_1(h)))
        h = F.leaky_relu(self.bn2_0(self.c2_0(h)))
        h = F.leaky_relu(self.bn2_1(self.c2_1(h)))
        feature = F.reshape(F.leaky_relu(self.c3_0(h)), (N, 8192))
        m = F.reshape(self.md(feature), (N, self.B * self.C, 1))
        m0 = F.broadcast_to(m, (N, self.B * self.C, N))
        m1 = F.transpose(m0, (2, 1, 0))
        d = F.absolute(F.reshape(m0 - m1, (N, self.B, self.C, N)))
        d = F.sum(F.exp(-F.sum(d, axis=2)), axis=2) - 1
        h = F.concat([feature, d])

        return self.l4(h) 
開發者ID:pfnet-research,項目名稱:chainer-gan-lib,代碼行數:19,代碼來源:net.py

示例3: calc_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import absolute [as 別名]
def calc_loss(self, grids, image_size, **kwargs):
        normalize = kwargs.get('normalize', True)
        corner_coordinates = self.get_corners(grids, image_size, scale_to_image_size=False)
        # determine whether a point is out of the image, image range is [-1, 1]
        # everything outside of this increases the loss!
        bbox = F.concat(corner_coordinates, axis=0)
        top_loss = bbox + 1.5
        bottom_loss = bbox - 1.5

        # do not penalize anything inside the image
        top_loss = F.absolute(F.minimum(top_loss, self.xp.zeros_like(top_loss.array)))
        top_loss = F.reshape(top_loss, (len(corner_coordinates), -1))
        bottom_loss = F.maximum(bottom_loss, self.xp.zeros_like(bottom_loss.array))
        bottom_loss = F.reshape(bottom_loss, (len(corner_coordinates), -1))

        loss = F.sum(F.concat([top_loss, bottom_loss], axis=0), axis=0)
        if normalize:
            loss = F.sum(loss)
        return loss 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:21,代碼來源:utils.py

示例4: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import absolute [as 別名]
def __call__(self, x):
        N = x.shape[0]
        #Below code copyed from https://github.com/pfnet-research/chainer-gan-lib/blob/master/minibatch_discrimination/net.py
        feature = F.reshape(x, (N, -1))
        m = F.reshape(self.md(feature), (N, self.B * self.C, 1))
        m0 = F.broadcast_to(m, (N, self.B * self.C, N))
        m1 = F.transpose(m0, (2, 1, 0))
        d = F.absolute(F.reshape(m0 - m1, (N, self.B, self.C, N)))
        d = F.sum(F.exp(-F.sum(d, axis=2)), axis=2) - 1
        h = F.concat([feature, d])

        h = self.l(h)
        return h 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:15,代碼來源:block_1d.py

示例5: _compute_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import absolute [as 別名]
def _compute_loss(self, exp_batch, errors_out=None):
        """Compute the Q-learning loss for a batch of experiences


        Args:
          exp_batch (dict): A dict of batched arrays of transitions
        Returns:
          Computed loss from the minibatch of experiences
        """
        y, t = self._compute_y_and_t(exp_batch)

        if errors_out is not None:
            del errors_out[:]
            delta = F.absolute(y - t)
            if delta.ndim == 2:
                delta = F.sum(delta, axis=1)
            delta = cuda.to_cpu(delta.array)
            for e in delta:
                errors_out.append(e)

        if 'weights' in exp_batch:
            return compute_weighted_value_loss(
                y, t, exp_batch['weights'],
                clip_delta=self.clip_delta,
                batch_accumulator=self.batch_accumulator)
        else:
            return compute_value_loss(y, t, clip_delta=self.clip_delta,
                                      batch_accumulator=self.batch_accumulator) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:30,代碼來源:dqn.py

示例6: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import absolute [as 別名]
def forward(self, x):
        y1 = F.absolute(x)
        return y1 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:5,代碼來源:MathMisc.py

示例7: _smooth_l1_loss_base

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import absolute [as 別名]
def _smooth_l1_loss_base(x, t, in_weight, sigma):
    sigma2 = sigma ** 2
    diff = in_weight * (x - t)
    abs_diff = F.absolute(diff)
    flag = (abs_diff.array < (1. / sigma2)).astype(np.float32)

    y = (flag * (sigma2 / 2.) * F.square(diff) +
         (1 - flag) * (abs_diff - 0.5 / sigma2))
    return F.sum(y, axis=1) 
開發者ID:chainer,項目名稱:chainercv,代碼行數:11,代碼來源:light_head_rcnn_train_chain.py

示例8: _smooth_l1_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import absolute [as 別名]
def _smooth_l1_loss(x, t, in_weight, sigma):
    sigma2 = sigma ** 2
    diff = in_weight * (x - t)
    abs_diff = F.absolute(diff)
    flag = (abs_diff.array < (1. / sigma2)).astype(np.float32)

    y = (flag * (sigma2 / 2.) * F.square(diff) +
         (1 - flag) * (abs_diff - 0.5 / sigma2))

    return F.sum(y) 
開發者ID:chainer,項目名稱:chainercv,代碼行數:12,代碼來源:faster_rcnn_train_chain.py

示例9: _smooth_l1_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import absolute [as 別名]
def _smooth_l1_loss(x, t, in_weight, sigma):
    sigma2 = sigma ** 2
    diff = in_weight * (x - t)
    abs_diff = F.absolute(diff)
    flag = (abs_diff.data < (1. / sigma2)).astype(np.float32)

    y = (flag * (sigma2 / 2.) * F.square(diff) +
         (1 - flag) * (abs_diff - 0.5 / sigma2))

    return F.sum(y) 
開發者ID:wkentaro,項目名稱:chainer-mask-rcnn,代碼行數:12,代碼來源:mask_rcnn_train_chain.py

示例10: megnet_softplus

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import absolute [as 別名]
def megnet_softplus(x):
    """Modified softplus function used by MEGNet

    The original implemantation is below.
    https://github.com/materialsvirtuallab/megnet/blob/f91773f0f3fa8402b494638af9ef2ed2807fcba7/megnet/activations.py#L6

    Args:
        x (Variable): Input variable
    Returns:
        output (Variable): Output variable whose shape is same with `x`
    """
    return functions.relu(x) + \
        functions.log(0.5 * functions.exp(-functions.absolute(x)) + 0.5) 
開發者ID:chainer,項目名稱:chainer-chemistry,代碼行數:15,代碼來源:megnet_softplus.py

示例11: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import absolute [as 別名]
def __call__(self, adj):
        masked_adj = adj[:, :, self.mask]
        log_s, t = self._s_t_functions(masked_adj)
        t = F.broadcast_to(t, adj.shape)
        s = F.sigmoid(log_s + 2)
        s = F.broadcast_to(s, adj.shape)
        adj = adj * self.mask + adj * (s * ~self.mask) + t * (~self.mask)
        log_det_jacobian = F.sum(F.log(F.absolute(s)), axis=(1, 2, 3))
        return adj, log_det_jacobian 
開發者ID:pfnet-research,項目名稱:graph-nvp,代碼行數:11,代碼來源:coupling.py

示例12: _compute_ddqn_losses

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import absolute [as 別名]
def _compute_ddqn_losses(self, exp_batch, errors_out=None):
        """Compute the Q-learning losses for a batch of experiences

        Args:
          exp_batch (dict): A dict of batched arrays of transitions
        Returns:
          Computed loss from the minibatch of experiences
        """
        y, t = self._compute_y_and_ts(exp_batch)
        n_branches = exp_batch['action'].shape[1]

        # Calculate the errors_out for priorities with the 1-step err
        del errors_out[:]
        delta = F.absolute(y - t)
        if delta.ndim == 2:
            delta = F.sum(delta, axis=1)
        delta = cuda.to_cpu(delta.array)
        for e in delta:
            errors_out.append(e)

        is_1_step = self.xp.abs(1. - exp_batch["is_n_step"]).reshape(-1, 1)
        is_1_step = self.xp.tile(is_1_step, (1, n_branches)).reshape(-1)
        is_n_step = exp_batch['is_n_step'].reshape(-1, 1)
        is_n_step = self.xp.tile(is_n_step, (1, n_branches)).reshape(-1)
        weights = exp_batch['weights'].reshape(-1, 1)
        weights = F.tile(weights, (1, n_branches)).reshape(-1)
        loss_1step = compute_weighted_value_loss(
            y, t, weights,
            mask=is_1_step,
            clip_delta=self.clip_delta,
            batch_accumulator=self.batch_accumulator)
        loss_nstep = compute_weighted_value_loss(
            y, t, weights,
            mask=is_n_step,
            clip_delta=self.clip_delta,
            batch_accumulator=self.batch_accumulator)

        return loss_nstep, loss_1step 
開發者ID:minerllabs,項目名稱:baselines,代碼行數:40,代碼來源:dqfd.py

示例13: compute_tv_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import absolute [as 別名]
def compute_tv_loss(images, masks):
    # s1 = cf.absolute(images[:, :, 1:, :-1] - images[:, :, :-1, :-1])
    # s2 = cf.absolute(images[:, :, :-1, 1:] - images[:, :, :-1, :-1])
    s1 = cf.square(images[:, :, 1:, :-1] - images[:, :, :-1, :-1])
    s2 = cf.square(images[:, :, :-1, 1:] - images[:, :, :-1, :-1])
    masks = cf.broadcast_to(masks[:, None, :-1, :-1], s1.shape)
    masks = masks.data == 1
    return cf.sum(masks * (s1 + s2)) 
開發者ID:hiroharu-kato,項目名稱:style_transfer_3d,代碼行數:10,代碼來源:train.py


注:本文中的chainer.functions.absolute方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。