本文整理匯總了Python中chainer.dataset.download.get_dataset_directory方法的典型用法代碼示例。如果您正苦於以下問題:Python download.get_dataset_directory方法的具體用法?Python download.get_dataset_directory怎麽用?Python download.get_dataset_directory使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.dataset.download
的用法示例。
在下文中一共展示了download.get_dataset_directory方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _retrieve_word_vocabulary
# 需要導入模塊: from chainer.dataset import download [as 別名]
# 或者: from chainer.dataset.download import get_dataset_directory [as 別名]
def _retrieve_word_vocabulary():
def creator(path):
words = _load_words(_train_url)
vocab = {}
index = 0
with open(path, 'w') as f:
for word in words:
if word not in vocab:
vocab[word] = index
index += 1
f.write(word + '\n')
return vocab
def loader(path):
vocab = {}
with open(path) as f:
for i, word in enumerate(f):
vocab[word.strip()] = i
return vocab
root = download.get_dataset_directory('pfnet/chainer/ptb')
path = os.path.join(root, 'vocab.txt')
return download.cache_or_load_file(path, creator, loader)
示例2: __init__
# 需要導入模塊: from chainer.dataset import download [as 別名]
# 或者: from chainer.dataset.download import get_dataset_directory [as 別名]
def __init__(self, data_dir='auto'):
super(CityscapesTestImageDataset, self).__init__()
if data_dir == 'auto':
data_dir = download.get_dataset_directory(
'pfnet/chainercv/cityscapes')
img_dir = os.path.join(data_dir, os.path.join('leftImg8bit', 'test'))
if not os.path.exists(img_dir):
raise ValueError(
'Cityscapes dataset does not exist at the expected location.'
'Please download it from https://www.cityscapes-dataset.com/.'
'Then place directory leftImg8bit at {}.'.format(
os.path.join(data_dir, 'leftImg8bit')))
self.img_paths = []
for city_dname in sorted(glob.glob(os.path.join(img_dir, '*'))):
for img_path in sorted(glob.glob(
os.path.join(city_dname, '*_leftImg8bit.png'))):
self.img_paths.append(img_path)
self.add_getter('img', self._get_image)
self.keys = 'img' # do not return tuple
示例3: get_sbd
# 需要導入模塊: from chainer.dataset import download [as 別名]
# 或者: from chainer.dataset.download import get_dataset_directory [as 別名]
def get_sbd():
# To support ChainerMN, the target directory should be locked.
with filelock.FileLock(os.path.join(download.get_dataset_directory(
'pfnet/chainercv/.lock'), 'sbd.lock')):
data_root = download.get_dataset_directory(root)
base_path = os.path.join(data_root, 'benchmark_RELEASE/dataset')
train_voc2012_file = os.path.join(base_path, 'train_voc2012.txt')
if os.path.exists(train_voc2012_file):
# skip downloading
return base_path
download_file_path = utils.cached_download(url)
ext = os.path.splitext(url)[1]
utils.extractall(download_file_path, data_root, ext)
six.moves.urllib.request.urlretrieve(
train_voc2012_url, train_voc2012_file)
_generate_voc2012_txt(base_path)
return base_path
示例4: get_atom_init_json_filepath
# 需要導入模塊: from chainer.dataset import download [as 別名]
# 或者: from chainer.dataset.download import get_dataset_directory [as 別名]
def get_atom_init_json_filepath(download_if_not_exist=True):
"""Construct a filepath which stores atom_init_json
This method check whether the file exist or not, and downloaded it if
necessary.
Args:
download_if_not_exist (bool): If `True` download dataset
if it is not downloaded yet.
Returns (str): file path for atom_init_json
"""
cache_root = download.get_dataset_directory(_root)
cache_path = os.path.join(cache_root, file_name_atom_init_json)
if not os.path.exists(cache_path) and download_if_not_exist:
logger = getLogger(__name__)
logger.info('Downloading atom_init.json...')
download_file_path = download.cached_download(download_url)
shutil.copy(download_file_path, cache_path)
return cache_path
示例5: _get_tox21_filepath
# 需要導入模塊: from chainer.dataset import download [as 別名]
# 或者: from chainer.dataset.download import get_dataset_directory [as 別名]
def _get_tox21_filepath(dataset_type):
"""Returns a file path in which the tox21 dataset is cached.
This function returns a file path in which `dataset_type`
of the tox21 dataset is cached.
Note that this function does not check if the dataset has actually
been downloaded or not.
Args:
dataset_type(str): Name of the target dataset type.
Either 'train', 'val', or 'test'.
Returns (str): file path for the tox21 dataset
"""
if dataset_type not in _config.keys():
raise ValueError("Invalid dataset type '{}'. Accepted values are "
"'train', 'val' or 'test'.".format(dataset_type))
c = _config[dataset_type]
sdffile = c['filename']
cache_root = download.get_dataset_directory(_root)
cache_path = os.path.join(cache_root, sdffile)
return cache_path
示例6: download_and_store_model
# 需要導入模塊: from chainer.dataset import download [as 別名]
# 或者: from chainer.dataset.download import get_dataset_directory [as 別名]
def download_and_store_model(alg, url, env, model_type):
"""Downloads a model file and puts it under model directory.
It downloads a file from the URL and puts it under model directory.
If there is already a file at the destination path,
it just returns the path without downloading the same file.
Args:
alg (string): String representation of algorithm used in MODELS dict.
url (string): URL to download from.
env (string): Environment in which pretrained model was trained.
model_type (string): Either `best` or `final`.
Returns:
string: Path to the downloaded file.
bool: whether the model was alredy cached.
"""
with filelock.FileLock(os.path.join(
get_dataset_directory(os.path.join('pfnet', 'chainerrl', '.lock')),
'models.lock')):
root = get_dataset_directory(
os.path.join('pfnet', 'chainerrl', 'models', alg, env))
url_basepath = os.path.join(url, alg, env)
file = model_type + ".zip"
path = os.path.join(root, file)
is_cached = os.path.exists(path)
if not is_cached:
cache_path = cached_download(os.path.join(url_basepath,
file))
os.rename(cache_path, path)
with zipfile.ZipFile(path, 'r') as zip_ref:
zip_ref.extractall(root)
return os.path.join(root, model_type), is_cached
示例7: _retrieve
# 需要導入模塊: from chainer.dataset import download [as 別名]
# 或者: from chainer.dataset.download import get_dataset_directory [as 別名]
def _retrieve(n_layers, name_npz, name_caffemodel, model):
root = download.get_dataset_directory('pfnet/chainer/models/')
path = os.path.join(root, name_npz)
path_caffemodel = os.path.join(root, name_caffemodel)
return download.cache_or_load_file(
path, lambda path: _make_npz(path, path_caffemodel, model, n_layers),
lambda path: npz.load_npz(path, model))
示例8: download_model
# 需要導入模塊: from chainer.dataset import download [as 別名]
# 或者: from chainer.dataset.download import get_dataset_directory [as 別名]
def download_model(url):
"""Downloads a model file and puts it under model directory.
It downloads a file from the URL and puts it under model directory.
For exmaple, if :obj:`url` is `http://example.com/subdir/model.npz`,
the pretrained weights file will be saved to
`$CHAINER_DATASET_ROOT/pfnet/chainercv/models/model.npz`.
If there is already a file at the destination path,
it just returns the path without downloading the same file.
Args:
url (string): URL to download from.
Returns:
string: Path to the downloaded file.
"""
# To support ChainerMN, the target directory should be locked.
with filelock.FileLock(os.path.join(
get_dataset_directory(os.path.join('pfnet', 'chainercv', '.lock')),
'models.lock')):
root = get_dataset_directory(
os.path.join('pfnet', 'chainercv', 'models'))
basename = os.path.basename(url)
path = os.path.join(root, basename)
if not os.path.exists(path):
cache_path = cached_download(url)
os.rename(cache_path, path)
return path
示例9: setUp
# 需要導入模塊: from chainer.dataset import download [as 別名]
# 或者: from chainer.dataset.download import get_dataset_directory [as 別名]
def setUp(self):
self.mnist_root = download.get_dataset_directory(
os.path.join('pfnet', 'chainer', 'mnist'))
self.kuzushiji_mnist_root = download.get_dataset_directory(
os.path.join('pfnet', 'chainer', 'kuzushiji_mnist'))
self.fashion_mnist_root = download.get_dataset_directory(
os.path.join('pfnet', 'chainer', 'fashion-mnist'))
示例10: setUp
# 需要導入模塊: from chainer.dataset import download [as 別名]
# 或者: from chainer.dataset.download import get_dataset_directory [as 別名]
def setUp(self):
self.root = download.get_dataset_directory(
os.path.join('pfnet', 'chainer', 'cifar'))
示例11: setUp
# 需要導入模塊: from chainer.dataset import download [as 別名]
# 或者: from chainer.dataset.download import get_dataset_directory [as 別名]
def setUp(self):
self.root = download.get_dataset_directory(
os.path.join('pfnet', 'chainer', 'svhn'))
示例12: _retrieve
# 需要導入模塊: from chainer.dataset import download [as 別名]
# 或者: from chainer.dataset.download import get_dataset_directory [as 別名]
def _retrieve(name, url, model):
root = download.get_dataset_directory('pfnet/chainer/models/')
path = os.path.join(root, name)
return download.cache_or_load_file(
path, lambda path: _make_npz(path, url, model),
lambda path: npz.load_npz(path, model))
示例13: _retrieve_ptb_words
# 需要導入模塊: from chainer.dataset import download [as 別名]
# 或者: from chainer.dataset.download import get_dataset_directory [as 別名]
def _retrieve_ptb_words(name, url):
def creator(path):
vocab = _retrieve_word_vocabulary()
words = _load_words(url)
x = numpy.empty(len(words), dtype=numpy.int32)
for i, word in enumerate(words):
x[i] = vocab[word]
numpy.savez_compressed(path, x=x)
return {'x': x}
root = download.get_dataset_directory('pfnet/chainer/ptb')
path = os.path.join(root, name)
loaded = download.cache_or_load_file(path, creator, numpy.load)
return loaded['x']
示例14: _retrieve_fashion_mnist
# 需要導入模塊: from chainer.dataset import download [as 別名]
# 或者: from chainer.dataset.download import get_dataset_directory [as 別名]
def _retrieve_fashion_mnist(name, urls):
root = download.get_dataset_directory('pfnet/chainer/fashion-mnist')
path = os.path.join(root, name)
return download.cache_or_load_file(
path, lambda path: make_npz(path, urls), numpy.load)
示例15: _retrieve_kuzushiji_mnist
# 需要導入模塊: from chainer.dataset import download [as 別名]
# 或者: from chainer.dataset.download import get_dataset_directory [as 別名]
def _retrieve_kuzushiji_mnist(name, urls):
root = download.get_dataset_directory('pfnet/chainer/kuzushiji_mnist')
path = os.path.join(root, name)
return download.cache_or_load_file(
path, lambda path: make_npz(path, urls), numpy.load)