當前位置: 首頁>>代碼示例>>Python>>正文


Python convert.concat_examples方法代碼示例

本文整理匯總了Python中chainer.dataset.convert.concat_examples方法的典型用法代碼示例。如果您正苦於以下問題:Python convert.concat_examples方法的具體用法?Python convert.concat_examples怎麽用?Python convert.concat_examples使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.dataset.convert的用法示例。


在下文中一共展示了convert.concat_examples方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: evaluate

# 需要導入模塊: from chainer.dataset import convert [as 別名]
# 或者: from chainer.dataset.convert import concat_examples [as 別名]
def evaluate(self):
        val_iter = self.get_iterator("main")
        target = self.get_target("main")
        loss = 0
        count = 0
        for batch in copy.copy(val_iter):
            x, t = convert.concat_examples(batch, device=self.device, padding=(0, -1))
            xp = chainer.backends.cuda.get_array_module(x)
            state = None
            for i in six.moves.range(len(x[0])):
                state, loss_batch = target(state, x[:, i], t[:, i])
                non_zeros = xp.count_nonzero(x[:, i])
                loss += loss_batch.data * non_zeros
                count += int(non_zeros)
        # report validation loss
        observation = {}
        with reporter.report_scope(observation):
            reporter.report({"loss": float(loss / count)}, target)
        return observation 
開發者ID:espnet,項目名稱:espnet,代碼行數:21,代碼來源:lm.py

示例2: __init__

# 需要導入模塊: from chainer.dataset import convert [as 別名]
# 或者: from chainer.dataset.convert import concat_examples [as 別名]
def __init__(self, iterator_a, iterator_b, opt_g_a, opt_g_b, opt_d_a, opt_d_b, device):
        self._iterators = {'main': iterator_a, 'second': iterator_b}
        self.generator_ab = opt_g_a.target
        self.generator_ba = opt_g_b.target
        self.discriminator_a = opt_d_a.target
        self.discriminator_b = opt_d_b.target
        self._optimizers = {
            'generator_ab': opt_g_a,
            'generator_ba': opt_g_b,
            'discriminator_a': opt_d_a,
            'discriminator_b': opt_d_b,
            }
           
        self.itr_a = iterator_a
        self.itr_b = iterator_b
        self.opt_g_a = opt_g_a
        self.opt_g_b = opt_g_b
        self.opt_d_a = opt_d_a
        self.opt_d_b = opt_d_b

        self.converter = convert.concat_examples
        self.device = device
        self.iteration = 0
        self.xp = self.generator_ab.xp
        self.bch = iterator_a.batch_size 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:27,代碼來源:updater.py

示例3: __init__

# 需要導入模塊: from chainer.dataset import convert [as 別名]
# 或者: from chainer.dataset.convert import concat_examples [as 別名]
def __init__(self, comm, iterator, target, device=None,
                 converter=convert.concat_examples, root=0,
                 **kwargs):
        progress_hook, = argument.parse_kwargs(kwargs, ('progress_hook', None))

        self.comm = comm
        self.iterator = iterator
        self._targets = {"main": target}
        self.converter = converter

        if device is not None:
            device = backend.get_device(device)
        self.device = device

        self._progress_hook = progress_hook

        assert 0 <= root and root < self.comm.size
        self.root = root 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:multi_node_evaluator.py

示例4: concat_examples

# 需要導入模塊: from chainer.dataset import convert [as 別名]
# 或者: from chainer.dataset.convert import concat_examples [as 別名]
def concat_examples(batch, device=None, padding=None):
    """Concat examples in minibatch.

    :param np.ndarray batch: The batch to concatenate
    :param int device: The device to send to
    :param Tuple[int,int] padding: The padding to use
    :return: (inputs, targets)
    :rtype (torch.Tensor, torch.Tensor)
    """
    x, t = convert.concat_examples(batch, padding=padding)
    x = torch.from_numpy(x)
    t = torch.from_numpy(t)
    if device is not None and device >= 0:
        x = x.cuda(device)
        t = t.cuda(device)
    return x, t 
開發者ID:espnet,項目名稱:espnet,代碼行數:18,代碼來源:lm.py

示例5: __init__

# 需要導入模塊: from chainer.dataset import convert [as 別名]
# 或者: from chainer.dataset.convert import concat_examples [as 別名]
def __init__(
            self, iterator, target, device=None,
            converter=convert.concat_examples, label_names=None,
            filename='segmmentation_iter={iteration}_idx={index}.jpg',
            mode='seg', n_processes=None):

        if isinstance(iterator, iterator_module.Iterator):
            iterator = {'main': iterator}
        self.iterators = iterator

        if isinstance(target, link.Link):
            target = {'main': target}
        self.targets = target

        self.device = device
        self.converter = converter
        self.label_names = label_names
        self.filename = filename
        self.mode = mode
        self.n_processes = n_processes or multiprocessing.cpu_count() 
開發者ID:takiyu,項目名稱:portrait_matting,代碼行數:22,代碼來源:portrait_vis_evaluator.py

示例6: __init__

# 需要導入模塊: from chainer.dataset import convert [as 別名]
# 或者: from chainer.dataset.convert import concat_examples [as 別名]
def __init__(self, iterator, target, converter=convert.concat_examples,
                 device=None, eval_hook=None, eval_func=None, name=None,
                 pos_label=1, ignore_labels=None, raise_value_error=True,
                 logger=None, sample_weight=None,
                 multioutput='uniform_average', ignore_nan=False):
        metrics_fun = {'r2_score': self.r2_score}
        super(R2ScoreEvaluator, self).__init__(
            iterator, target, converter=converter, device=device,
            eval_hook=eval_hook, eval_func=eval_func, metrics_fun=metrics_fun,
            name=name, logger=logger)

        self.pos_label = pos_label
        self.ignore_labels = ignore_labels
        self.raise_value_error = raise_value_error
        self.sample_weight = sample_weight
        self.multioutput = multioutput
        self.ignore_nan = ignore_nan 
開發者ID:chainer,項目名稱:chainer-chemistry,代碼行數:19,代碼來源:r2_score_evaluator.py

示例7: __init__

# 需要導入模塊: from chainer.dataset import convert [as 別名]
# 或者: from chainer.dataset.convert import concat_examples [as 別名]
def __init__(self, iterator, target, converter=convert.concat_examples,
                 device=None, eval_hook=None, eval_func=None, metrics_fun=None,
                 name=None, logger=None):
        super(BatchEvaluator, self).__init__(
            iterator, target, converter=converter, device=device,
            eval_hook=eval_hook, eval_func=eval_func)
        self.name = name
        self.logger = logger or getLogger()

        if callable(metrics_fun):
            # TODO(mottodora): use better name or infer
            self.metrics_fun = {"evaluation": metrics_fun}
        elif isinstance(metrics_fun, dict):
            self.metrics_fun = metrics_fun
        else:
            raise TypeError('Unexpected type metrics_fun must be Callable or '
                            'dict.') 
開發者ID:chainer,項目名稱:chainer-chemistry,代碼行數:19,代碼來源:batch_evaluator.py

示例8: __init__

# 需要導入模塊: from chainer.dataset import convert [as 別名]
# 或者: from chainer.dataset.convert import concat_examples [as 別名]
def __init__(self, iterator, opt, device, loss_func,
                 converter=convert.concat_examples):
        super(MolNvpUpdater, self).__init__(
            iterator=iterator,
            optimizer=opt,
            converter=converter,
            loss_func=loss_func,
            device=device,
            loss_scale=None,
        )
        if isinstance(iterator, iterator_module.Iterator):
            iterator = {'main': iterator}
        self.iterator = iterator
        self.opt = opt
        self.device = device
        self.loss_func = loss_func
        self.model = opt.target
        self.converter = converter 
開發者ID:pfnet-research,項目名稱:graph-nvp,代碼行數:20,代碼來源:train_model_chainermn.py

示例9: __init__

# 需要導入模塊: from chainer.dataset import convert [as 別名]
# 或者: from chainer.dataset.convert import concat_examples [as 別名]
def __init__(self, iterator, optimizer, class_dim, converter=convert.concat_examples,
                device=None, loss_func=None):
        if isinstance(iterator, iterator_module.Iterator):
            iterator = {'main': iterator}
        self._iterators = iterator

        if not isinstance(optimizer, dict):
            optimizer = {'main': optimizer}
        self._optimizers = optimizer

        if device is not None and device >= 0:
            for optimizer in six.itervalues(self._optimizers):
                optimizer.target.to_gpu(device)

        self.converter = converter
        self.loss_func = loss_func
        self.device = device
        self.iteration = 0
        self.class_dim = class_dim 
開發者ID:ShimShim46,項目名稱:HFT-CNN,代碼行數:21,代碼來源:MyUpdater.py

示例10: preview_convert

# 需要導入模塊: from chainer.dataset import convert [as 別名]
# 或者: from chainer.dataset.convert import concat_examples [as 別名]
def preview_convert(iterator_a, iterator_b, g_a, g_b, device, gla, dst):
    @chainer.training.make_extension()
    def make_preview(trainer):
        with chainer.using_config('train', False):
            with chainer.no_backprop_mode():
                x_a = iterator_a.next()
                x_a = convert.concat_examples(x_a, device)
                x_a = chainer.Variable(x_a)

                x_b = iterator_b.next()
                x_b = convert.concat_examples(x_b, device)
                x_b = chainer.Variable(x_b)

                x_ab = g_a(x_a)
                x_ba = g_b(x_b)

                x_bab = g_a(x_ba)
                x_aba = g_b(x_ab)

                preview_dir = '{}/preview'.format(dst)
                if not os.path.exists(preview_dir):
                    os.makedirs(preview_dir)
                image_dir = '{}/image'.format(dst)
                if not os.path.exists(image_dir):
                    os.makedirs(image_dir)

                names = ['a', 'ab', 'aba', 'b', 'ba', 'bab']
                images = [x_a, x_ab, x_aba, x_b, x_ba, x_bab]
                for n, i in zip(names, images):
                    i = cp.asnumpy(i.data)[:,:,padding:-padding,:].reshape(1, -1, 128)
                    image.save(image_dir+'/{}{}.jpg'.format(trainer.updater.epoch,n), i)
                    w = np.concatenate([gla.inverse(_i) for _i in dataset.reverse(i)])
                    dataset.save(preview_dir+'/{}{}.wav'.format(trainer.updater.epoch,n), 16000, w)

    return make_preview 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:37,代碼來源:trainer.py

示例11: predict

# 需要導入模塊: from chainer.dataset import convert [as 別名]
# 或者: from chainer.dataset.convert import concat_examples [as 別名]
def predict(self, images, oversample=True):
        """Computes all the probabilities of given images.

        Args:
            images (iterable of PIL.Image or numpy.ndarray): Input images.
            oversample (bool): If ``True``, it averages results across
                center, corners, and mirrors. Otherwise, it uses only the
                center.

        Returns:
            ~chainer.Variable: Output that contains the class probabilities
            of given images.

        """

        x = concat_examples([prepare(img, size=(256, 256)) for img in images])
        if oversample:
            x = imgproc.oversample(x, crop_dims=(224, 224))
        else:
            x = x[:, :, 16:240, 16:240]
        # Use no_backprop_mode to reduce memory consumption
        with function.no_backprop_mode():
            x = Variable(self.xp.asarray(x))
            y = self(x, layers=['prob'])['prob']
            if oversample:
                n = y.data.shape[0] // 10
                y_shape = y.data.shape[1:]
                y = reshape(y, (n, 10) + y_shape)
                y = sum(y, axis=1) / 10
        return y 
開發者ID:pfnet-research,項目名稱:nips17-adversarial-attack,代碼行數:32,代碼來源:resnet_layer.py

示例12: __init__

# 需要導入模塊: from chainer.dataset import convert [as 別名]
# 或者: from chainer.dataset.convert import concat_examples [as 別名]
def __init__(self, iterator, updater, converter=convert.concat_examples,
                 device=None, eval_hook=None):
        if isinstance(iterator, iterator_module.Iterator):
            iterator = {'main': iterator}
        self._iterators = iterator

        if isinstance(updater.model, link.Link):
            self._targets = {'main': updater.model}
        else:
            self._targets = updater.model

        self.updater = updater
        self.converter = converter
        self.device = device
        self.eval_hook = eval_hook 
開發者ID:oyam,項目名稱:Semantic-Segmentation-using-Adversarial-Networks,代碼行數:17,代碼來源:extensions.py

示例13: eval

# 需要導入模塊: from chainer.dataset import convert [as 別名]
# 或者: from chainer.dataset.convert import concat_examples [as 別名]
def eval(loss_function, iterator):
    """
    Evaluates the mean of given loss function over the entire batch in given
    iterator
    
    :param loss_function: The loss function to evaluate 
    :param iterator: The iterator over the evaluation data set
    :return: The mean loss value
    """
    iterator.reset()
    results = []
    for batch in iterator:
        input_args = convert.concat_examples(batch)
        results.append(loss_function(*input_args).data)
    return np.mean(results) 
開發者ID:rjagerman,項目名稱:shoelace,代碼行數:17,代碼來源:test_linear_network.py

示例14: run_train_loop

# 需要導入模塊: from chainer.dataset import convert [as 別名]
# 或者: from chainer.dataset.convert import concat_examples [as 別名]
def run_train_loop(
        optimizer, train_iter, test_iter, test_count, epoch, device):
    model = optimizer.target

    train_count = 0
    sum_accuracy = 0
    sum_loss = 0
    while train_iter.epoch < epoch:
        batch = train_iter.next()
        x_array, t_array = convert.concat_examples(batch, device)
        x = chainer.Variable(x_array)
        t = chainer.Variable(t_array, requires_grad=False)
        optimizer.update(model, x, t)
        train_count += len(t)
        sum_loss += float(model.loss.array) * len(t)
        sum_accuracy += float(model.accuracy.array) * len(t)

        if train_iter.is_new_epoch:
            print('epoch: ', train_iter.epoch)
            print('train mean loss: {}, accuracy: {}'.format(
                sum_loss / train_count, sum_accuracy / train_count))
            # evaluation
            train_count = 0
            sum_accuracy = 0
            sum_loss = 0
            # It is good practice to turn off train mode during evaluation.
            with configuration.using_config('train', False):
                for batch in test_iter:
                    x_array, t_array = convert.concat_examples(
                        batch, device)
                    x = chainer.Variable(x_array)
                    t = chainer.Variable(t_array, requires_grad=False)
                    loss = model(x, t)
                    sum_loss += float(loss.array) * len(t)
                    sum_accuracy += float(model.accuracy.array) * len(t)

            test_iter.reset()
            print('test mean  loss: {}, accuracy: {}'.format(
                sum_loss / test_count, sum_accuracy / test_count))
            sum_accuracy = 0
            sum_loss = 0 
開發者ID:chainer,項目名稱:chainer,代碼行數:43,代碼來源:train_mnist_custom_loop.py

示例15: predict

# 需要導入模塊: from chainer.dataset import convert [as 別名]
# 或者: from chainer.dataset.convert import concat_examples [as 別名]
def predict(self, images, oversample=True):
        """Computes all the probabilities of given images.

        Args:
            images (iterable of PIL.Image or numpy.ndarray): Input images.
                When you specify a color image as a :class:`numpy.ndarray`,
                make sure that color order is RGB.
            oversample (bool): If ``True``, it averages results across
                center, corners, and mirrors. Otherwise, it uses only the
                center.

        Returns:
            ~chainer.Variable: Output that contains the class probabilities
            of given images.

        """

        x = concat_examples([prepare(img, size=(256, 256)) for img in images])
        if oversample:
            x = imgproc.oversample(x, crop_dims=(224, 224))
        else:
            x = x[:, :, 16:240, 16:240]
        # Use no_backprop_mode to reduce memory consumption
        with function.no_backprop_mode(), chainer.using_config('train', False):
            x = Variable(self.xp.asarray(x))
            y = self(x, layers=['prob'])['prob']
            if oversample:
                n = len(y) // 10
                y_shape = y.shape[1:]
                y = reshape(y, (n, 10) + y_shape)
                y = sum(y, axis=1) / 10
        return y 
開發者ID:chainer,項目名稱:chainer,代碼行數:34,代碼來源:vgg.py


注:本文中的chainer.dataset.convert.concat_examples方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。