當前位置: 首頁>>代碼示例>>Python>>正文


Python cuda.ndarray方法代碼示例

本文整理匯總了Python中chainer.cuda.ndarray方法的典型用法代碼示例。如果您正苦於以下問題:Python cuda.ndarray方法的具體用法?Python cuda.ndarray怎麽用?Python cuda.ndarray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.cuda的用法示例。


在下文中一共展示了cuda.ndarray方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: visualize_layer_activations

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import ndarray [as 別名]
def visualize_layer_activations(model, im, layer_idx):

    """Compute the activations for each feature map for the given layer for
    this particular image. Note that the input x should be a mini-batch
    of size one, i.e. a single image.
    """

    if model._device_id is not None and model._device_id >= 0:  # Using GPU
        im = cuda.cupy.array(im)

    activations = model.activations(Variable(im), layer_idx)

    if isinstance(activations, cuda.ndarray):
        activations = cuda.cupy.asnumpy(activations)

    # Rescale to [0, 255]
    activations -= activations.min()
    activations /= activations.max()
    activations *= 255

    return activations.astype(np.uint8) 
開發者ID:hvy,項目名稱:chainer-visualization,代碼行數:23,代碼來源:visualize.py

示例2: __call__

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import ndarray [as 別名]
def __call__(self, key, value):
        key = self.path + key.lstrip('/')
        if not self.strict and key not in self.npz:
            return value
        
        dataset = None
        for npz in self.npz_list:
            try:
                this_d = npz[key]
            except KeyError:
                this_d = npz["updater/model:main/"+key]
            if dataset is None:
                dataset = this_d
            else:
                dataset = dataset + this_d
        dataset /= len(self.npz_list)
            
        if value is None:
            return dataset
        elif isinstance(value, np.ndarray):
            np.copyto(value, dataset)
        elif isinstance(value, cuda.ndarray):
            value.set(np.asarray(dataset))
        else:
            value = type(value)(np.asarray(dataset))
        return value 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:28,代碼來源:train.py

示例3: lazy_init_conv_to_join

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import ndarray [as 別名]
def lazy_init_conv_to_join(block, x):
    if not hasattr(block, 'Conv2d_1x1'):
        with block.init_scope():
            block.Conv2d_1x1 = L.Convolution2D(x.shape[1], 1, initialW=I.HeNormal())
        if isinstance(x.data, cuda.ndarray):
            block.Conv2d_1x1.to_gpu(x.data.device) 
開發者ID:pfnet-research,項目名稱:nips17-adversarial-attack,代碼行數:8,代碼來源:inception_resnet_v2.py

示例4: _check_class_weight_option

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import ndarray [as 別名]
def _check_class_weight_option(class_weight):
    if class_weight is not None:
        if class_weight.ndim != 1:
            raise ValueError('class_weight.ndim should be 1')
        if class_weight.dtype.kind != 'f':
            raise ValueError('The dtype of class_weight should be \'f\'')
        if isinstance(class_weight, variable.Variable):
            raise ValueError('class_weight should be a numpy.ndarray or '
                             'cupy.ndarray, not a chainer.Variable') 
開發者ID:chainer,項目名稱:models,代碼行數:11,代碼來源:adaptive_softmax.py

示例5: _check_input_values

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import ndarray [as 別名]
def _check_input_values(x, t, ignore_label):
    # Extract the raw ndarray as Variable.__ge__ is not implemented.
    # We assume that t is already an ndarray.
    if isinstance(x, variable.Variable):
        x = x.data

    if not (((0 <= t) &
             (t < x.shape[1])) |
            (t == ignore_label)).all():
        msg = ('Each label `t` need to satisfy '
               '`0 <= t < x.shape[1] or t == %d`' % ignore_label)
        raise ValueError(msg) 
開發者ID:chainer,項目名稱:models,代碼行數:14,代碼來源:adaptive_softmax.py

示例6: forward

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import ndarray [as 別名]
def forward(self, inputs):
        if any(isinstance(x, cuda.ndarray) for x in inputs):
            return self.forward_gpu(inputs)
        else:
            return self.forward_cpu(inputs) 
開發者ID:chainer,項目名稱:models,代碼行數:7,代碼來源:adaptive_softmax.py

示例7: backward

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import ndarray [as 別名]
def backward(self, inputs, grad_outputs):
        if any(isinstance(x, cuda.ndarray) for x in inputs + grad_outputs):
            return self.backward_gpu(inputs, grad_outputs)
        else:
            return self.backward_cpu(inputs, grad_outputs) 
開發者ID:chainer,項目名稱:models,代碼行數:7,代碼來源:adaptive_softmax.py

示例8: _concat_arrays

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import ndarray [as 別名]
def _concat_arrays(arrays, padding):
    if not isinstance(arrays[0], numpy.ndarray) and\
       not isinstance(arrays[0], cuda.ndarray):
        arrays = numpy.asarray(arrays)

    xp = cuda.get_array_module(arrays[0])
    with cuda.get_device_from_array(arrays[0]):
        return xp.concatenate(arrays) 
開發者ID:yukitsuji,項目名稱:voxelnet_chainer,代碼行數:10,代碼來源:voxelnet_concat.py

示例9: default

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import ndarray [as 別名]
def default(self, obj):
        if isinstance(obj, numpy.integer):
            return int(obj)
        elif isinstance(obj, numpy.floating):
            return float(obj)
        elif isinstance(obj, numpy.ndarray):
            return obj.tolist()
        elif isinstance(obj, cuda.ndarray):
            return cuda.to_cpu(obj).tolist()
        elif _is_pathlib_available and isinstance(obj, PurePath):
            # save as str representation
            # convert windows path separator to linux format
            return str(obj).replace('\\', '/')
        else:
            return super(JSONEncoderEX, self).default(obj) 
開發者ID:chainer,項目名稱:chainer-chemistry,代碼行數:17,代碼來源:json_utils.py

示例10: check_add_deconv_layers

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import ndarray [as 別名]
def check_add_deconv_layers(self, nobias=True):

        """Add a deconvolutional layer for each convolutional layer already
        defined in the network."""

        if len(self.deconv_blocks) == len(self.conv_blocks):
            return

        for conv_block in self.conv_blocks:
            deconv_block = []
            for conv in conv_block:
                out_channels, in_channels, kh, kw = conv.W.data.shape

                if isinstance(conv.W.data, cuda.ndarray):
                    initialW = cuda.cupy.asnumpy(conv.W.data)
                else:
                    initialW = conv.W.data

                deconv = L.Deconvolution2D(out_channels, in_channels,
                                           (kh, kw), stride=conv.stride,
                                           pad=conv.pad,
                                           initialW=initialW,
                                           nobias=nobias)

                if isinstance(conv.W.data, cuda.ndarray):
                    deconv.to_gpu()

                self.add_link('de{}'.format(conv.name), deconv)
                deconv_block.append(deconv)

            self.deconv_blocks.append(deconv_block) 
開發者ID:hvy,項目名稱:chainer-visualization,代碼行數:33,代碼來源:vgg.py

示例11: adaptive_softmax_cross_entropy

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import ndarray [as 別名]
def adaptive_softmax_cross_entropy(
        x, t, Ws, Rs, cutoff, normalize=True,
        ignore_label=-1, reduce='mean', enable_double_backprop=False):
    """Computes cross entropy loss for pre-softmax activations.

    Args:
        x (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \
        :class:`cupy.ndarray`):
            Variable holding a multidimensional array whose element indicates
            hidden states: the first axis of the variable
            represents the number of samples, and the second axis represents
            the number of hidden units.
        Ws (list of :class:`~chainer.Variable` or :class:`numpy.ndarray` or \
        :class:`cupy.ndarray`):
            Variables of weight matrices for word outputs.
            The first matrix is for the head.
            The rest matrices are for the tails in order.
        Rs (list of :class:`~chainer.Variable` or :class:`numpy.ndarray` or \
        :class:`cupy.ndarray`):
            Variables of weight matrices for reducing hidden units.
            The matrices are for the tails in order.
            The number of matrices must be ``len(Ws) - 1``.
        t (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \
        :class:`cupy.ndarray`):
            Variable holding an :class:`numpy.int32` vector of ground truth
            labels. If ``t[i] == ignore_label``, corresponding ``x[i]`` is
            ignored.
        cutoff (list of int):
            Cutoff indices of clusters. e.g. [0, 2000, 10000, n_vocab]
        normalize (bool): If ``True``, this function normalizes the cross
            entropy loss across all instances. If ``False``, it only
            normalizes along a batch size.
        ignore_label (int): Label value you want to ignore. Its default value
            is ``-1``. See description of the argument `t`.
        reduce (str): A string that determines whether to reduce the loss
            values. If it is ``'mean'``, it computes the sum of the individual
            cross entropy and normalize it according to ``normalize`` option.
            If it is ``'no'``, this function computes cross entropy for each
            instance and does not normalize it (``normalize`` option is
            ignored). In this case, the loss value of the ignored instance,
            which has ``ignore_label`` as its target value, is set to ``0``.

    Returns:
        ~chainer.Variable: A variable holding a scalar array of the cross
        entropy loss.  If ``reduce`` is ``'mean'``, it is a scalar array.
        If ``reduce`` is ``'no'``, the shape is same as that of ``x``.

    """

    if enable_double_backprop:
        raise NotImplementedError()
    else:
        return AdaptiveSoftmaxCrossEntropy(
            cutoff, normalize=normalize,
            ignore_label=ignore_label,
            reduce=reduce)(
                x, t, *Ws, *Rs) 
開發者ID:chainer,項目名稱:models,代碼行數:59,代碼來源:adaptive_softmax.py


注:本文中的chainer.cuda.ndarray方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。