當前位置: 首頁>>代碼示例>>Python>>正文


Python chainer.cuda方法代碼示例

本文整理匯總了Python中chainer.cuda方法的典型用法代碼示例。如果您正苦於以下問題:Python chainer.cuda方法的具體用法?Python chainer.cuda怎麽用?Python chainer.cuda使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer的用法示例。


在下文中一共展示了chainer.cuda方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: out_generated_image

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import cuda [as 別名]
def out_generated_image(gen, dis, rows, cols, seed, dst):
    @chainer.training.make_extension()
    def make_image(trainer):
        np.random.seed(seed)
        n_images = rows * cols
        xp = gen.xp
        z = Variable(xp.asarray(gen.make_hidden(n_images)))
        with chainer.using_config('train', False):
            x = gen(z)
        x = chainer.cuda.to_cpu(x.array)
        np.random.seed()

        x = np.asarray(np.clip(x * 255, 0.0, 255.0), dtype=np.uint8)
        _, _, H, W = x.shape
        x = x.reshape((rows, cols, 3, H, W))
        x = x.transpose(0, 3, 1, 4, 2)
        x = x.reshape((rows * H, cols * W, 3))

        preview_dir = '{}/preview'.format(dst)
        preview_path = preview_dir +\
            '/image{:0>8}.png'.format(trainer.updater.iteration)
        if not os.path.exists(preview_dir):
            os.makedirs(preview_dir)
        Image.fromarray(x).save(preview_path)
    return make_image 
開發者ID:chainer,項目名稱:chainer,代碼行數:27,代碼來源:visualize.py

示例2: _check_list_tuple

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import cuda [as 別名]
def _check_list_tuple(self, typ):
        assert typ in (list, tuple)
        a = numpy.random.uniform(-1, 1, (0,))
        b = numpy.random.uniform(-1, 1, (2, 3))
        c = cuda.cupy.random.uniform(-1, 1, (0,))
        d = cuda.cupy.random.uniform(-1, 1, (2, 2))
        xs = typ([a, b, c, d, None, a, b, None, c, d])
        xs_cpu = cuda.to_cpu(xs)

        assert isinstance(xs_cpu, typ)
        assert len(xs) == len(xs_cpu)
        for i in (0, 1, 2, 3, 5, 6, 8, 9):
            assert isinstance(xs_cpu[i], numpy.ndarray)
            cuda.cupy.testing.assert_array_equal(xs[i], xs_cpu[i])
        assert xs_cpu[0] is a
        assert xs_cpu[1] is b
        assert xs_cpu[2] is xs_cpu[8]
        assert xs_cpu[3] is xs_cpu[9]
        assert xs_cpu[4] is None
        assert xs_cpu[5] is a
        assert xs_cpu[6] is b
        assert xs_cpu[7] is None 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:test_cuda.py

示例3: test_numpy_scalar

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import cuda [as 別名]
def test_numpy_scalar(self):
        dtype = self.dtype
        if dtype is numpy.bool_:
            x = dtype(True)
        elif issubclass(dtype, numpy.complex_):
            x = dtype(3.2 - 2.4j)
        elif issubclass(dtype, numpy.integer):
            x = dtype(3)
        elif issubclass(dtype, numpy.floating):
            x = dtype(3.2)
        else:
            assert False

        y = cuda.to_gpu(x)
        assert isinstance(y, cuda.ndarray)
        assert y.shape == ()
        assert y.dtype == dtype
        assert y == x 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:test_cuda.py

示例4: _get_device_or_current

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import cuda [as 別名]
def _get_device_or_current(
        device: tp.Optional[types.CudaDeviceSpec]
) -> Device:
    # Returns cuda.Device.
    # - If cuda.Device instance, it's returned intact.
    # - If None, the current device is returned.
    # - If non-negative integer, cuda.Device is returned.
    # - Otherwise: error.
    if device is None:
        return cuda.Device()
    if isinstance(device, Device):
        return device
    if not (isinstance(device, _integer_types) and device >= 0):
        raise ValueError('Invalid CUDA device specifier: {}'.format(device))
    return cuda.Device(int(device))


# ------------------------------------------------------------------------------
# cupy.ndarray allocation and copy
# ------------------------------------------------------------------------------ 
開發者ID:chainer,項目名稱:chainer,代碼行數:22,代碼來源:cuda.py

示例5: to_cpu

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import cuda [as 別名]
def to_cpu(array, stream=None):
    """Copies the given GPU array to host CPU.

    Args:
        array (*array*, None, list or tuple):
            Array or arrays to be sent to CPU.
        stream (cupy.cuda.Stream): CUDA stream.

    Returns:
        numpy.ndarray, list or tuple: Array on CPU.

        If some of the arrays are already on CPU, then this function just
        returns those arrays without performing any copy.

        If input arrays include `None`, it is returned as `None` as is.

    """
    return _backend._convert_arrays(
        array, lambda arr: _array_to_cpu(arr, stream)) 
開發者ID:chainer,項目名稱:chainer,代碼行數:21,代碼來源:cuda.py

示例6: reduce

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import cuda [as 別名]
def reduce(in_params, out_params, map_expr, reduce_expr, post_map_expr,
           identity, name, **kwargs):
    """Creates a global reduction kernel function.

    This function uses :func:`~chainer.backends.cuda.memoize` to cache the
    resulting kernel object, i.e. the resulting kernel object is cached for
    each argument combination and CUDA device.

    The arguments are the same as those for
    :class:`cupy.ReductionKernel`, except that the ``name`` argument is
    mandatory.

    """
    check_cuda_available()
    return cupy.ReductionKernel(
        in_params, out_params, map_expr, reduce_expr, post_map_expr,
        identity, name, **kwargs) 
開發者ID:chainer,項目名稱:chainer,代碼行數:19,代碼來源:cuda.py

示例7: raw

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import cuda [as 別名]
def raw(code, name, *args, **kwargs):
    """Creates a raw kernel function.

    This function uses :func:`~chainer.backends.cuda.memoize` to cache the
    resulting kernel object, i.e. the resulting kernel object is cached for
    each argument combination and CUDA device.

    The arguments are the same as those for :class:`cupy.RawKernel`.

    """
    check_cuda_available()
    return cupy.RawKernel(code, name, *args, **kwargs)


# ------------------------------------------------------------------------------
# numpy/cupy compatible coding
# ------------------------------------------------------------------------------ 
開發者ID:chainer,項目名稱:chainer,代碼行數:19,代碼來源:cuda.py

示例8: sample_generate_light

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import cuda [as 別名]
def sample_generate_light(gen, dst, rows=5, cols=5, seed=0):
    @chainer.training.make_extension()
    def make_image(trainer):
        np.random.seed(seed)
        n_images = rows * cols
        xp = gen.xp
        z = Variable(xp.asarray(gen.make_hidden(n_images)))
        with chainer.using_config('train', False), chainer.using_config('enable_backprop', False):
            x = gen(z, stage=trainer.updater.stage)
        x = chainer.cuda.to_cpu(x.data)
        np.random.seed()

        x = np.asarray(np.clip(x * 127.5 + 127.5, 0.0, 255.0), dtype=np.uint8)
        _, _, H, W = x.shape
        x = x.reshape((rows, cols, 3, H, W))
        x = x.transpose(0, 3, 1, 4, 2)
        x = x.reshape((rows * H, cols * W, 3))

        preview_dir = '{}/preview'.format(dst)
        preview_path = preview_dir + '/image_latest.png'
        if not os.path.exists(preview_dir):
            os.makedirs(preview_dir)
        Image.fromarray(x).save(preview_path)

    return make_image 
開發者ID:pfnet-research,項目名稱:chainer-gan-lib,代碼行數:27,代碼來源:evaluation.py

示例9: sample_generate

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import cuda [as 別名]
def sample_generate(gen, dst, rows=10, cols=10, seed=0):
    @chainer.training.make_extension()
    def make_image(trainer):
        np.random.seed(seed)
        n_images = rows * cols
        xp = gen.xp
        z = Variable(xp.asarray(gen.make_hidden(n_images)))
        with chainer.using_config('train', False), chainer.using_config('enable_backprop', False):
            x = gen(z, stage=trainer.updater.stage)
        x = chainer.cuda.to_cpu(x.data)
        np.random.seed()

        x = np.asarray(np.clip(x * 127.5 + 127.5, 0.0, 255.0), dtype=np.uint8)
        _, _, h, w = x.shape
        x = x.reshape((rows, cols, 3, h, w))
        x = x.transpose(0, 3, 1, 4, 2)
        x = x.reshape((rows * h, cols * w, 3))

        preview_dir = '{}/preview'.format(dst)
        preview_path = preview_dir + '/image{:0>8}.png'.format(trainer.updater.iteration)
        if not os.path.exists(preview_dir):
            os.makedirs(preview_dir)
        Image.fromarray(x).save(preview_path)

    return make_image 
開發者ID:pfnet-research,項目名稱:chainer-gan-lib,代碼行數:27,代碼來源:evaluation.py

示例10: sample_generate_light

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import cuda [as 別名]
def sample_generate_light(gen, dst, rows=5, cols=5, seed=0):
    @chainer.training.make_extension()
    def make_image(trainer):
        np.random.seed(seed)
        n_images = rows * cols
        xp = gen.xp
        z = Variable(xp.asarray(gen.make_hidden(n_images)))
        with chainer.using_config('train', False), chainer.using_config('enable_backprop', False):
            x = gen(z)
        x = chainer.cuda.to_cpu(x.data)
        np.random.seed()

        x = np.asarray(np.clip(x * 127.5 + 127.5, 0.0, 255.0), dtype=np.uint8)
        _, _, H, W = x.shape
        x = x.reshape((rows, cols, 3, H, W))
        x = x.transpose(0, 3, 1, 4, 2)
        x = x.reshape((rows * H, cols * W, 3))

        preview_dir = '{}/preview'.format(dst)
        preview_path = preview_dir + '/image_latest.png'
        if not os.path.exists(preview_dir):
            os.makedirs(preview_dir)
        Image.fromarray(x).save(preview_path)

    return make_image 
開發者ID:pfnet-research,項目名稱:chainer-gan-lib,代碼行數:27,代碼來源:evaluation.py

示例11: test_forward_consistency

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import cuda [as 別名]
def test_forward_consistency(self, nobias=False):

        x_cpu = chainer.Variable(self.x)
        W_cpu = chainer.Variable(self.W)
        b_cpu = None if nobias else chainer.Variable(self.b)
        func_cpu = graph_convolution.GraphConvolutionFunction(self.L, self.K)
        func_cpu.to_cpu()
        args_cpu = (x_cpu, W_cpu)
        if b_cpu is not None:
            args_cpu += (b_cpu, )
        y_cpu = func_cpu(*args_cpu)

        x_gpu = chainer.Variable(cuda.to_gpu(self.x))
        W_gpu = chainer.Variable(cuda.to_gpu(self.W))
        b_gpu = None if nobias else chainer.Variable(cuda.to_gpu(self.b))
        func_gpu = graph_convolution.GraphConvolutionFunction(self.L, self.K)
        func_gpu.to_gpu()
        args_gpu = (x_gpu, W_gpu)
        if b_gpu is not None:
            args_gpu += (b_gpu, )
        y_gpu = func_gpu(*args_gpu)

        testing.assert_allclose(
            y_cpu.data, y_gpu.data.get(), **self.check_forward_options) 
開發者ID:pfnet-research,項目名稱:chainer-graph-cnn,代碼行數:26,代碼來源:test_graph_convolution.py

示例12: forward_gpu

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import cuda [as 別名]
def forward_gpu(self, inputs):
        x, W = inputs[:2]
        n_batch, c_in, N = x.shape
        b = inputs[2] if len(inputs) == 3 else None
        xp = cuda.get_array_module(x)
        with cuda.get_device(x.data):
            K = self.K
            LmI_data, LmI_indices, LmI_indptr = self.LmI_tuple

            if x.dtype != LmI_data.dtype:
                LmI_data = LmI_data.astype(x.dtype)

            C = xp.empty((K, N, c_in, n_batch), dtype=x.dtype)
            chebyshev_matvec_gpu(C, x, K, n_batch,
                                 LmI_data, LmI_indices, LmI_indptr)

            C = C.transpose((3, 2, 0, 1))
            self.C = C
            y = xp.tensordot(C, W, ((1, 2), (1, 2)))

            if b is not None:
                y += b

            return xp.rollaxis(y, 2, 1),  # y.shape = (n_batch, c_out, N) 
開發者ID:pfnet-research,項目名稱:chainer-graph-cnn,代碼行數:26,代碼來源:graph_convolution.py

示例13: forward_gpu

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import cuda [as 別名]
def forward_gpu(self, inputs):
        x = inputs[0]
        xp = cuda.get_array_module(x)
        n_batch, c, N = x.shape
        N_coarse = len(self.pooling_inds)

        with cuda.get_device(x.data):
            x = x.transpose((2, 1, 0))
            p_dim = self.pooling_inds.shape[1]
            y = xp.empty((N_coarse, c, n_batch), dtype=x.dtype)
            self.max_inds = xp.empty((N_coarse, c, n_batch), dtype=np.int32)
            pooling_inds = cuda.to_gpu(self.pooling_inds)
            gpu_graphpool_fwd(N_coarse, p_dim, pooling_inds,
                              x, y, self.max_inds)
            y = y.transpose((2, 1, 0))

        return y, 
開發者ID:pfnet-research,項目名稱:chainer-graph-cnn,代碼行數:19,代碼來源:graph_max_pooling.py

示例14: classify

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import cuda [as 別名]
def classify(self,x=None):
		if x is None:
			x=Tensor.context

		if not isinstance(x,ImageTensor):
			x=Input(x)

		xp = Deel.xp
		x_data = xp.asarray(self.x_batch)
		xv = chainer.Variable(x.value, volatile=True)

		h, w = xv.data.shape[2:]
		cls_score, bbox_pred  = self.func(xv,np.array([[h, w, x.im_scale]]))
		draw_rois(x.content,x.im_scale,self.func.rois,bbox_pred,cls_score.data)

		if Deel.gpu >= 0:
			cls_score = chainer.cuda.cupy.asnumpy(cls_score)
			bbox_pred = chainer.cuda.cupy.asnumpy(bbox_pred)
		result = draw_result(x.content, 1.0, cls_score.data, bbox_pred,0.3,0.8)
		cv.imshow("res",result)
		cv.waitKey(0) 
開發者ID:uei,項目名稱:deel,代碼行數:23,代碼來源:fasterRCNN.py

示例15: sample_generate_light

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import cuda [as 別名]
def sample_generate_light(gen, mapping, dst, rows=8, cols=8, z=None, seed=0, subdir='preview'):
    @chainer.training.make_extension()
    def make_image(trainer):
        nonlocal rows, cols, z
        if trainer.updater.stage > 15:
            rows = min(rows, 2)
            cols = min(cols, 2)
        elif trainer.updater.stage > 13:
            rows = min(rows, 3)
            cols = min(cols, 3)
        elif trainer.updater.stage > 11:
            rows = min(rows, 4)
            cols = min(cols, 4)

        np.random.seed(seed)
        n_images = rows * cols
        xp = gen.xp
        if z is None:
            z = Variable(xp.asarray(mapping.make_hidden(n_images)))
        else:
            z = z[:n_images]
        with chainer.using_config('train', False), chainer.using_config('enable_backprop', False):
            x = gen(mapping(z), stage=trainer.updater.stage)
        x = chainer.cuda.to_cpu(x.data)
        np.random.seed()

        x = convert_batch_images(x, rows, cols)

        preview_dir = '{}/{}'.format(dst, subdir)
        if not os.path.exists(preview_dir):
            os.makedirs(preview_dir)

        preview_path = preview_dir + '/image_latest.png'
        Image.fromarray(x).save(preview_path)
        preview_path = preview_dir + '/image{:0>8}.png'.format(trainer.updater.iteration)
        Image.fromarray(x).save(preview_path)

    return make_image 
開發者ID:pfnet-research,項目名稱:chainer-stylegan,代碼行數:40,代碼來源:train.py


注:本文中的chainer.cuda方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。