本文整理匯總了Python中chainer.cuda.get_device_from_array方法的典型用法代碼示例。如果您正苦於以下問題:Python cuda.get_device_from_array方法的具體用法?Python cuda.get_device_from_array怎麽用?Python cuda.get_device_from_array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.cuda
的用法示例。
在下文中一共展示了cuda.get_device_from_array方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: update
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_device_from_array [as 別名]
def update(self, s, i):
"""Update decoder state
Args:
s (any): Current (hidden, cell) states. If ``None`` is specified
zero-vector is used.
i (int): input label.
Return:
(~chainer.Variable) updated decoder state
"""
if cuda.get_device_from_array(s[0].data).id >= 0:
xp = cuda.cupy
else:
xp = np
v = chainer.Variable(xp.array([i],dtype=np.int32))
x = self.embed(v)
if s is not None:
hy, cy, dy = self.lstm(s[0], s[1], [x])
else:
hy, cy, dy = self.lstm(None, None, [x])
return hy, cy, dy
示例2: calc_loss
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_device_from_array [as 別名]
def calc_loss(self, x, t):
batch_predictions, _, grids = x
self.xp = cuda.get_array_module(batch_predictions, t)
loss = self.calc_actual_loss(batch_predictions, None, t)
# reshape grids
batch_size = t.shape[0]
grids = grids[-1]
grid_shape = grids.shape
grids = F.reshape(grids, (-1, batch_size) + grid_shape[1:])
grid_losses = []
for grid in F.separate(grids, axis=0):
with cuda.get_device_from_array(getattr(grid, 'data', grid[0].data)):
grid_losses.append(self.calc_direction_loss(grid))
return loss + (sum(grid_losses) / len(grid_losses))
示例3: decode_predictions
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_device_from_array [as 別名]
def decode_predictions(self, predictions):
# concat all individual predictions and slice for each time step
predictions = F.concat([F.expand_dims(p, axis=0) for p in predictions], axis=0)
words = []
with cuda.get_device_from_array(predictions.data):
for prediction in F.separate(predictions, axis=0):
prediction = F.squeeze(prediction, axis=0)
prediction = F.softmax(prediction, axis=1)
prediction = self.xp.argmax(prediction.data, axis=1)
word = self.loss_metrics.strip_prediction(prediction[self.xp.newaxis, ...])[0]
if len(word) == 1 and word[0] == 0:
return ''
word = "".join(map(self.loss_metrics.label_to_char, word))
word = word.replace(chr(self.loss_metrics.char_map[str(self.loss_metrics.blank_symbol)]), '')
words.append(word)
text = " ".join(words)
return text
示例4: sum_sqnorm
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_device_from_array [as 別名]
def sum_sqnorm(arr):
"""Calculate the norm of the array.
Args:
arr (numpy.ndarray)
Returns:
Float: Sum of the norm calculated from the given array.
"""
sq_sum = collections.defaultdict(float)
for x in arr:
with cuda.get_device_from_array(x) as dev:
if x is not None:
x = x.ravel()
s = x.dot(x)
sq_sum[int(dev)] += s
return sum([float(i) for i in six.itervalues(sq_sum)])
示例5: init_state
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_device_from_array [as 別名]
def init_state(self, param):
xp = cuda.get_array_module(param.array)
with cuda.get_device_from_array(param.array):
self.state['ms'] = xp.zeros_like(param.array)
示例6: __call__
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_device_from_array [as 別名]
def __call__(self, rule, param):
if param.name == 'b':
return
p, g = param.array, param.grad
if p is None or g is None:
return
with cuda.get_device_from_array(p) as dev:
if int(dev) == -1:
g += self.rate * p
else:
kernel = cuda.elementwise(
'T p, T decay', 'T g', 'g += decay * p', 'weight_decay')
kernel(p, self.rate, g)
示例7: compute_ctxt_demux
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_device_from_array [as 別名]
def compute_ctxt_demux(self, fb_concat, mask):
mb_size, nb_elems, Hi = fb_concat.data.shape
assert Hi == self.Hi
assert mb_size == 1
assert len(mask) == 0
precomputed_al_factor = F.reshape(self.al_lin_h(
F.reshape(fb_concat, (mb_size * nb_elems, self.Hi))), (mb_size, nb_elems, self.Ha))
# concatenated_mask = F.concat([F.reshape(mask_elem, (mb_size, 1)) for mask_elem in mask], 1)
def compute_ctxt(previous_state, prev_word_embedding=None):
current_mb_size = previous_state.data.shape[0]
al_factor = F.broadcast_to(precomputed_al_factor, (current_mb_size, nb_elems, self.Ha))
# used_fb_concat = F.broadcast_to(fb_concat, (current_mb_size, nb_elems, Hi))
# used_concatenated_mask = F.broadcast_to(concatenated_mask, (current_mb_size, nb_elems))
state_al_factor = self.al_lin_s(previous_state)
#As suggested by Isao Goto
if prev_word_embedding is not None:
state_al_factor = state_al_factor + self.al_lin_y(prev_word_embedding)
state_al_factor_bc = F.broadcast_to(F.reshape(state_al_factor, (current_mb_size, 1, self.Ha)), (current_mb_size, nb_elems, self.Ha))
a_coeffs = F.reshape(self.al_lin_o(F.reshape(F.tanh(state_al_factor_bc + al_factor),
(current_mb_size * nb_elems, self.Ha))), (current_mb_size, nb_elems))
# with cuda.get_device_from_array(used_concatenated_mask.data):
# a_coeffs = a_coeffs - 10000 * (1-used_concatenated_mask.data)
attn = F.softmax(a_coeffs)
# ci = F.reshape(F.batch_matmul(attn, used_fb_concat, transa = True), (current_mb_size, self.Hi))
ci = F.reshape(F.matmul(attn, F.reshape(fb_concat, (nb_elems, Hi))), (current_mb_size, self.Hi))
return ci, attn
return compute_ctxt
示例8: naive_call
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_device_from_array [as 別名]
def naive_call(self, fb_concat, targets, mask):
compute_ctxt = self.attn_module.naive_call(fb_concat, mask)
loss = None
current_mb_size = targets[0].data.shape[0]
assert current_mb_size == 1
previous_states = self.gru.get_initial_states(current_mb_size)
# previous_word = Variable(np.array([self.bos_idx] * mb_size, dtype = np.int32))
# xp = cuda.get_array_module(self.gru.initial_state.data)
with cuda.get_device_from_array(self.gru.initial_state.data):
prev_y = F.broadcast_to(self.bos_embeding, (1, self.Eo))
# previous_word = Variable(xp.array([self.bos_idx] * current_mb_size, dtype = np.int32))
previous_word = None
attn_list = []
total_nb_predictions = 0
for i in range(len(targets)):
if previous_word is not None: # else we are using the initial prev_y
prev_y = self.emb(previous_word)
ci, attn = compute_ctxt(previous_states[-1])
concatenated = F.concat((prev_y, ci))
# print(concatenated.data.shape)
new_states = self.gru(previous_states, concatenated)
all_concatenated = F.concat((concatenated, new_states[-1]))
logits = self.lin_o(self.maxo(all_concatenated))
local_loss = F.softmax_cross_entropy(logits, targets[i])
loss = local_loss if loss is None else loss + local_loss
total_nb_predictions += 1
previous_word = targets[i]
previous_states = new_states
attn_list.append(attn)
loss = loss / total_nb_predictions
return loss, attn_list
示例9: calc_accuracy
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_device_from_array [as 別名]
def calc_accuracy(self, x, t):
batch_predictions, _, _ = x
batch_predictions = F.concat([F.expand_dims(prediction, axis=0) for prediction in batch_predictions], axis=0)
self.xp = cuda.get_array_module(batch_predictions[0], t)
accuracies = []
with cuda.get_device_from_array(batch_predictions.data):
classification = F.softmax(batch_predictions, axis=2)
classification = classification.data
classification = self.xp.argmax(classification, axis=2)
classification = self.xp.transpose(classification, (1, 0))
words = self.strip_prediction(classification)
labels = self.strip_prediction(t)
num_correct_words = 0
for word, label in zip(words, labels):
word = "".join(map(self.label_to_char, word))
label = "".join(map(self.label_to_char, label))
if word == label:
num_correct_words += 1
accuracy = num_correct_words / len(labels)
accuracies.append(accuracy)
overall_accuracy = sum(accuracies) / max(len(accuracies), 1)
self.scale_area_loss_factor(overall_accuracy)
return overall_accuracy
示例10: calc_accuracy
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_device_from_array [as 別名]
def calc_accuracy(self, x, t):
batch_predictions, _, _ = x
self.xp = cuda.get_array_module(batch_predictions[0], t)
batch_size = t.shape[0]
t = F.reshape(t, (batch_size, self.num_timesteps, -1))
accuracies = []
for predictions, labels in zip(batch_predictions, F.separate(t, axis=1)):
if isinstance(predictions, list):
predictions = F.concat([F.expand_dims(p, axis=0) for p in predictions], axis=0)
with cuda.get_device_from_array(predictions.data):
classification = F.softmax(predictions, axis=2)
classification = classification.data
classification = self.xp.argmax(classification, axis=2)
classification = self.xp.transpose(classification, (1, 0))
words = self.strip_prediction(classification)
labels = self.strip_prediction(labels.data)
num_correct_words = 0
for word, label in zip(words, labels):
word = "".join(map(self.label_to_char, word))
label = "".join(map(self.label_to_char, label))
if word == label:
num_correct_words += 1
accuracy = num_correct_words / len(labels)
accuracies.append(accuracy)
overall_accuracy = sum(accuracies) / max(len(accuracies), 1)
self.scale_area_loss_factor(overall_accuracy)
return overall_accuracy
示例11: calc_loss
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_device_from_array [as 別名]
def calc_loss(self, x, t):
batch_predictions, _, grids = x
self.xp = cuda.get_array_module(batch_predictions[0], t)
# reshape labels
batch_size = t.shape[0]
# reshape grids
grid_shape = grids.shape
if self.uses_original_data:
grids = F.reshape(grids, (self.num_timesteps, batch_size, 4,) + grid_shape[1:])
else:
grids = F.reshape(grids, (self.num_timesteps, batch_size, 1,) + grid_shape[1:])
recognition_losses = []
for prediction, label in zip(batch_predictions, F.separate(t, axis=1)):
recognition_loss = F.softmax_cross_entropy(prediction, label)
recognition_losses.append(recognition_loss)
losses = [sum(recognition_losses) / len(recognition_losses)]
# with cuda.get_device_from_array(grids.data):
# grid_list = F.separate(F.reshape(grids, (self.timesteps, -1,) + grids.shape[3:]), axis=0)
# overlap_losses = []
# for grid_1, grid_2 in itertools.combinations(grid_list, 2):
# overlap_losses.append(self.calc_iou_loss(grid_1, grid_2))
# losses.append(sum(overlap_losses) / len(overlap_losses))
for i, grid in enumerate(F.separate(grids, axis=0), start=1):
with cuda.get_device_from_array(grid.data):
grid_losses = []
for sub_grid in F.separate(grid, axis=1):
width, height = self.get_bbox_side_lengths(sub_grid)
grid_losses.append(self.area_loss_factor * self.calc_area_loss(width, height))
grid_losses.append(self.aspect_ratio_loss_factor * self.calc_aspect_ratio_loss(width, height))
grid_losses.append(self.calc_direction_loss(sub_grid))
grid_losses.append(self.calc_height_loss(height))
losses.append(sum(grid_losses))
return sum(losses) / len(losses)
示例12: calc_accuracy
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_device_from_array [as 別名]
def calc_accuracy(self, predictions, labels):
batch_predictions = predictions
# concat all individual predictions and slice for each time step
batch_predictions = F.concat([F.expand_dims(p, axis=2) for p in batch_predictions], axis=2)
t = F.reshape(labels, (1, self.args.timesteps, -1))
accuracies = []
with cuda.get_device_from_array(batch_predictions.data):
for prediction, label in zip(F.separate(batch_predictions, axis=0), F.separate(t, axis=2)):
classification = F.softmax(prediction, axis=2)
classification = classification.data
classification = self.xp.argmax(classification, axis=2)
# classification = self.xp.transpose(classification, (1, 0))
words = self.strip_prediction(classification)
labels = self.strip_prediction(label.data)
for word, label in zip(words, labels):
word = "".join(map(self.label_to_char, word))
label = "".join(map(self.label_to_char, label))
if word == label:
self.num_correct_words += 1
self.num_words += 1
return word, label
示例13: __call__
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_device_from_array [as 別名]
def __call__(self, images):
self.lstm.reset_state()
self.transform_2.reset_state()
h = self.bn0(self.conv0(images))
h = F.average_pooling_2d(F.relu(h), 2, stride=2)
h = self.rs1(h)
h = F.max_pooling_2d(h, 2, stride=2)
h = self.rs2(h)
h = F.max_pooling_2d(h, 2, stride=2)
h = self.rs3(h)
# h = self.rs4(h)
self.vis_anchor = h
h = F.average_pooling_2d(h, 5, stride=2)
localizations = []
with cuda.get_device_from_array(h.data):
# lstm_prediction = chainer.Variable(self.xp.zeros((len(images), self.lstm.state_size), dtype=h.dtype))
for _ in range(self.num_timesteps):
# in_feature = self.attend(h, lstm_prediction)
in_feature = h
lstm_prediction = F.relu(self.lstm(in_feature))
transformed = self.transform_2(lstm_prediction)
transformed = F.reshape(transformed, (-1, 2, 3))
localizations.append(rotation_dropout(transformed, ratio=self.dropout_ratio))
return F.concat(localizations, axis=0)
示例14: localization_net
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_device_from_array [as 別名]
def localization_net(self, images):
self.lstm.reset_state()
self.transform_2.reset_state()
images = self.data_bn(images)
h = F.relu(self.bn0(self.conv0(images)))
h = F.max_pooling_2d(h, 3, stride=2, pad=1)
h = self.rs1_1(h)
h = self.rs1_2(h)
h = self.rs2_1(h)
h = self.rs2_2(h)
h = self.rs3_1(h)
h = self.rs3_2(h)
# h = self.rs4_1(h)
# h = self.rs4_2(h)
self.localization_vis_anchor = h
h = F.average_pooling_2d(h, 5, stride=1)
localizations = []
with cuda.get_device_from_array(h.data):
for _ in range(self.num_timesteps):
in_feature = h
lstm_prediction = F.relu(self.lstm(in_feature))
transformed = self.transform_2(lstm_prediction)
transformed = F.reshape(transformed, (-1, 2, 3))
localizations.append(rotation_dropout(transformed, ratio=self.dropout_ratio))
return F.concat(localizations, axis=0)
示例15: decode_predictions
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_device_from_array [as 別名]
def decode_predictions(self, predictions):
# concat all individual predictions and slice for each time step
predictions = F.concat([F.expand_dims(prediction, axis=0) for prediction in predictions], axis=0)
with cuda.get_device_from_array(predictions.data):
prediction = F.squeeze(predictions, axis=1)
classification = F.softmax(prediction, axis=1)
classification = classification.data
classification = self.xp.argmax(classification, axis=1)
words = self.loss_metrics.strip_prediction(classification[self.xp.newaxis, ...])[0]
word = "".join(map(self.loss_metrics.label_to_char, words))
return word