本文整理匯總了Python中chainer.cuda.get_array_module方法的典型用法代碼示例。如果您正苦於以下問題:Python cuda.get_array_module方法的具體用法?Python cuda.get_array_module怎麽用?Python cuda.get_array_module使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.cuda
的用法示例。
在下文中一共展示了cuda.get_array_module方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: check_forward
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_array_module [as 別名]
def check_forward(self, x_data):
xp = cuda.get_array_module(x_data)
y = mellowmax(x_data, axis=self.axis, omega=self.omega)
self.assertEqual(y.array.dtype, self.dtype)
x_min = xp.min(x_data, axis=self.axis)
x_max = xp.max(x_data, axis=self.axis)
x_mean = xp.mean(x_data, axis=self.axis)
print('x_min', x_min)
print('y.array', y.array)
# min <= mellowmax <= max
eps = 1e-5
self.assertTrue(xp.all(x_min <= y.array + eps))
self.assertTrue(xp.all(x_max >= y.array - eps))
# omega > 0 -> mellowmax is more like max
if self.omega > 0:
self.assertTrue(xp.all(x_mean <= y.array + eps))
# omega < 0 -> mellowmax is more like min
if self.omega < 0:
self.assertTrue(xp.all(x_mean >= y.array - eps))
示例2: bound_by_tanh
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_array_module [as 別名]
def bound_by_tanh(x, low, high):
"""Bound a given value into [low, high] by tanh.
Args:
x (chainer.Variable): value to bound
low (numpy.ndarray): lower bound
high (numpy.ndarray): upper bound
Returns: chainer.Variable
"""
assert isinstance(x, chainer.Variable)
assert low is not None
assert high is not None
xp = cuda.get_array_module(x.array)
x_scale = (high - low) / 2
x_scale = xp.expand_dims(xp.asarray(x_scale), axis=0)
x_mean = (high + low) / 2
x_mean = xp.expand_dims(xp.asarray(x_mean), axis=0)
return F.tanh(x) * x_scale + x_mean
示例3: channelwise_inhibited
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_array_module [as 別名]
def channelwise_inhibited(self, h):
self.c = random.randint(0, 2)
xp = cuda.get_array_module(h.data)
num = h.data.shape[0]
h = F.split_axis(h, 3, 1)
c = F.reshape(h[self.c], (num, 16, 16))
z = Variable(xp.zeros_like(c.data), 'AUTO')
c = F.batch_matmul(c, z)
c = F.reshape(c, (num, 1, 16, 16))
hs = []
for i, s in enumerate(h):
if i == self.c:
hs.append(c)
else:
hs.append(s)
return F.concat(hs, 1)
示例4: channelwise_inhibited
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_array_module [as 別名]
def channelwise_inhibited(self, h):
xp = cuda.get_array_module(h.data)
num = h.data.shape[0]
h = F.split_axis(h, 3, 1)
c = F.reshape(h[self.c], (num, 16, 16))
z = Variable(xp.zeros_like(c.data), 'AUTO')
c = F.batch_matmul(c, z)
c = F.reshape(c, (num, 1, 16, 16))
hs = []
for i, s in enumerate(h):
if i == self.c:
hs.append(c)
else:
hs.append(s)
return F.concat(hs, 1)
示例5: backward_gpu
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_array_module [as 別名]
def backward_gpu(self, inputs, gys):
if not self.gpu_optim:
return self.backward_cpu(inputs, gys)
xp = cuda.get_array_module(*inputs)
x, gamma, beta = inputs
gy, = gys
g_beta = xp.sum(gy, axis=0, keepdims=True)
g_gamma = xp.sum(gy*self.normalized, axis=0, keepdims=True)
gy2 = gy*gamma
gy_centered = gy2 - xp.mean(gy2, axis=1, keepdims=True)
sc_prod = xp.sum(gy_centered * self.normalized, axis = 1, keepdims=True)
H = x.shape[1]
# ga = backprop_scale(self.inv_norm, gy_centered, self.normalized, sc_prod/H)
ga = cp.ElementwiseKernel(
'T inv_norm, T gy_centered, T normalized, T sc_prod',
'T z',
'''
z = inv_norm *(gy_centered - normalized * (sc_prod/%f));
'''%H,
'backprop_scale')(self.inv_norm, gy_centered, self.normalized, sc_prod)
return ga, g_gamma, g_beta
示例6: _batch_matmul
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_array_module [as 別名]
def _batch_matmul(a, b, transa=False, transb=False, transout=False):
a = a.reshape(a.shape[:2] + (-1,))
b = b.reshape(b.shape[:2] + (-1,))
trans_axis = (0, 2, 1)
if transout:
transa, transb = not transb, not transa
a, b = b, a
if transa:
a = a.transpose(trans_axis)
if transb:
b = b.transpose(trans_axis)
xp = cuda.get_array_module(a)
if xp is numpy:
ret = numpy.empty(a.shape[:2] + b.shape[2:], dtype=a.dtype)
for i in six.moves.range(len(a)):
ret[i] = numpy.dot(a[i], b[i])
return ret
return xp.matmul(a, b)
示例7: forward
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_array_module [as 別名]
def forward(self, x, t):
xp = cuda.get_array_module(x)
y = self.predictor(x)
log_softmax = F.log_softmax(y)
# SelectItem is not supported by onnx-chainer.
# TODO(hamaji): Support it?
# log_prob = F.select_item(log_softmax, t)
batch_size = chainer.Variable(xp.array(t.size, xp.float32),
name='batch_size')
self.extra_inputs = [batch_size]
# TODO(hamaji): Currently, F.sum with axis=1 cannot be
# backpropped properly.
# log_prob = F.sum(log_softmax * t, axis=1)
# return -F.sum(log_prob, axis=0) / self.batch_size
log_prob = F.sum(log_softmax * t, axis=(0, 1))
loss = -log_prob / batch_size
reporter.report({'loss': loss}, self)
if self.compute_accuracy:
acc = accuracy.accuracy(y, xp.argmax(t, axis=1))
reporter.report({'accuracy': acc}, self)
loss.name = 'loss'
return loss
示例8: listmle
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_array_module [as 別名]
def listmle(x, t):
"""
The ListMLE loss as in Xia et al (2008), Listwise Approach to Learning to
Rank - Theory and Algorithm.
:param x: The activation of the previous layer
:param t: The target labels
:return: The loss
"""
# Get the ground truth by sorting activations by the relevance labels
xp = cuda.get_array_module(t)
t_hat = t[:, 0]
x_hat = x[xp.flip(xp.argsort(t_hat), axis=0)]
# Compute MLE loss
final = logcumsumexp(x_hat)
return F.sum(final - x_hat)
示例9: _pl_sample
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_array_module [as 別名]
def _pl_sample(t, α):
"""
Sample from the plackett luce distribution directly
:param t: The target labels
:return: A random permutation from the plackett-luce distribution
parameterized by the target labels
"""
xp = cuda.get_array_module(t)
t = t[:, 0]
probs = xp.exp(t * α)
probs /= xp.sum(probs)
# Use CPU-based numpy implementation, because cupy.random.choice with
# replace=False does not work
probs = cuda.to_cpu(probs)
result = np.random.choice(probs.shape[0], probs.shape[0], replace=False,
p=probs)
return xp.array(result, copy=False)
示例10: dc_loss
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_array_module [as 別名]
def dc_loss(embedding, label):
"""
Deep clustering loss function.
Args:
embedding: (T,D)-shaped activation values
label: (T,C)-shaped labels
return:
(1,)-shaped squared flobenius norm of the difference
between embedding and label affinity matrices
"""
xp = cuda.get_array_module(label)
b = xp.zeros((label.shape[0], 2**label.shape[1]))
b[np.arange(label.shape[0]),
[int(''.join(str(x) for x in t), base=2) for t in label.data]] = 1
label_f = chainer.Variable(b.astype(np.float32))
loss = F.sum(F.square(F.matmul(embedding, embedding, True, False))) \
+ F.sum(F.square(F.matmul(label_f, label_f, True, False))) \
- 2 * F.sum(F.square(F.matmul(embedding, label_f, True, False)))
return loss
示例11: vat_loss
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_array_module [as 別名]
def vat_loss(forward, distance, x, train=True, epsilon=8.0, xi=1e-6, Ip=1, p_logit=None):
if p_logit is None:
p_logit = forward(x, train=train, update_batch_stats=False).data # unchain
else:
assert not isinstance(p_logit, Variable)
xp = cuda.get_array_module(x.data)
d = xp.random.normal(size=x.shape)
d = get_normalized_vector(d, xp)
for ip in range(Ip):
x_d = Variable(x.data + xi * d.astype(xp.float32))
p_d_logit = forward(x_d, train=train, update_batch_stats=False)
kl_loss = distance(p_logit, p_d_logit)
kl_loss.backward()
d = x_d.grad
d = d / xp.sqrt(xp.sum(d ** 2, axis=range(1, len(d.shape)), keepdims=True))
x_adv = x + epsilon * d
p_adv_logit = forward(x_adv, train=train, update_batch_stats=False)
return distance(p_logit, p_adv_logit)
示例12: loss_unlabeled
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_array_module [as 別名]
def loss_unlabeled(forward, x, args):
if args.method == 'vat':
# Virtual adversarial training loss
logit = forward(x, train=True, update_batch_stats=False)
return loss.vat_loss(forward, loss.distance, x, epsilon=args.epsilon, xi=XI, p_logit=logit.data)
elif args.method == 'vatent':
# Virtual adversarial training loss + Conditional Entropy loss
logit = forward(x, train=True, update_batch_stats=False)
vat_loss = loss.vat_loss(forward, loss.distance, x, epsilon=args.epsilon, xi=XI, p_logit=logit.data)
ent_y_x = loss.entropy_y_x(logit)
return vat_loss + ent_y_x
elif args.method == 'baseline':
xp = cuda.get_array_module(x.data)
return Variable(xp.array(0, dtype=xp.float32))
else:
raise NotImplementedError
示例13: calc_loss
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_array_module [as 別名]
def calc_loss(self, x, t):
batch_predictions, _, grids = x
self.xp = cuda.get_array_module(batch_predictions, t)
loss = self.calc_actual_loss(batch_predictions, None, t)
# reshape grids
batch_size = t.shape[0]
grids = grids[-1]
grid_shape = grids.shape
grids = F.reshape(grids, (-1, batch_size) + grid_shape[1:])
grid_losses = []
for grid in F.separate(grids, axis=0):
with cuda.get_device_from_array(getattr(grid, 'data', grid[0].data)):
grid_losses.append(self.calc_direction_loss(grid))
return loss + (sum(grid_losses) / len(grid_losses))
示例14: calc_loss
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_array_module [as 別名]
def calc_loss(self, x, t):
batch_predictions, _, _ = x
# concat all individual predictions and slice for each time step
batch_predictions = F.concat([F.expand_dims(p, axis=0) for p in batch_predictions], axis=0)
self.xp = cuda.get_array_module(batch_predictions[0], t)
batch_size = t.shape[0]
t = F.reshape(t, (batch_size, self.num_timesteps, -1))
losses = []
for predictions, labels in zip(F.separate(batch_predictions, axis=0), F.separate(t, axis=1)):
batch_size, num_chars, num_classes = predictions.shape
predictions = F.reshape(predictions, (batch_size * num_chars, num_classes))
labels = F.reshape(labels, (-1,))
losses.append(F.softmax_cross_entropy(predictions, labels))
return sum(losses)
示例15: backward_log_softmax
# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import get_array_module [as 別名]
def backward_log_softmax(self, x, y, gy):
if cuda.cudnn_enabled:
cudnn = cuda.cudnn
libcudnn = cuda.cuda.cudnn
_algorithm = libcudnn.CUDNN_SOFTMAX_LOG
_mode = libcudnn.CUDNN_SOFTMAX_MODE_CHANNEL
xp = cuda.get_array_module(x)
if xp is not numpy and chainer.should_use_cudnn('>=auto', 3000):
oz_dtype = 'd' if x.dtype == 'd' else 'f'
one = numpy.array(1, dtype=oz_dtype).ctypes
zero = numpy.array(0, dtype=oz_dtype).ctypes
handle = cudnn.get_handle()
gx = xp.empty(x.shape, dtype=x.dtype)
gx_cube = gx.reshape(gx.shape[:2] + (-1, 1))
desc = cudnn.create_tensor_descriptor(gx_cube)
libcudnn.softmaxBackward(
handle, _algorithm, _mode, one.data, desc.value,
y.data.ptr, desc.value, gy.data.ptr, zero.data,
desc.value, gx.data.ptr)
else:
gx = gy - xp.exp(y) * gy.sum(axis=1, keepdims=True)
return gx