當前位置: 首頁>>代碼示例>>Python>>正文


Python cuda.elementwise方法代碼示例

本文整理匯總了Python中chainer.cuda.elementwise方法的典型用法代碼示例。如果您正苦於以下問題:Python cuda.elementwise方法的具體用法?Python cuda.elementwise怎麽用?Python cuda.elementwise使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.cuda的用法示例。


在下文中一共展示了cuda.elementwise方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward_gpu

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import elementwise [as 別名]
def forward_gpu(self, inputs):
        n = len(inputs)
        ptrs = cuda.cupy.asarray([x.data.ptr for x in inputs],
                                 dtype=cuda.cupy.int64)
        ws = cuda.cupy.asarray(self.weights, dtype=cuda.cupy.float32)
        y = cuda.elementwise(
            'T x0, int64 xs, raw W ws, int32 n_xs',
            'T y',
            'float** xs_ = (float**) xs;'
            'y = 0;'
            'for (size_t j = 0; j < n_xs; ++j) {'
            '  y += xs_[j][i] * ws[j];'
            '}',
            'weighted_sum_arrays'.format(n))(inputs[0],
                                             ptrs.data.ptr,
                                             ws,
                                             len(ptrs))
        return y, 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:20,代碼來源:weighted_sum_arrays.py

示例2: update_core_gpu

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import elementwise [as 別名]
def update_core_gpu(self, param):
        grad = param.grad
        if grad is None:
            return

        hp = self.hyperparam
        eps = grad.dtype.type(hp.eps)
        if hp.eps != 0 and eps == 0:
            raise ValueError(
                'eps of Adam optimizer is too small for {} ({})'.format(
                    grad.dtype.name, hp.eps))

        cuda.elementwise(
            'T grad, T lr, T one_minus_beta1, T one_minus_beta2, T eps, \
             T eta, T weight_decay_rate',
            'T param, T m, T v',
            '''m += one_minus_beta1 * (grad - m);
               v += one_minus_beta2 * (grad * grad - v);
               param -= eta * lr * (m / (sqrt(v) + eps) +
                               weight_decay_rate * param);''',
            'adam')(grad, self.lr, 1 - hp.beta1,
                    1 - hp.beta2, hp.eps,
                    hp.eta, hp.weight_decay_rate,
                    param.data, self.state['m'], self.state['v']) 
開發者ID:chainer,項目名稱:models,代碼行數:26,代碼來源:opt.py

示例3: forward

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import elementwise [as 別名]
def forward(self, x):
        if hasattr(self, 'mask'):
            y = x[0] * self.mask
        else:
            scale = x[0].dtype.type(1. / (1 - self.dropout_ratio))
            xp = cuda.get_array_module(*x)
            mask = xp.ones(x[0].shape, dtype=numpy.float32)
            rand = xp.random.rand(*x[0].shape[:2])
            mask[rand <= self.dropout_ratio] = 0

            if xp == numpy:
                self.mask = mask * scale
                y = x[0] * self.mask
            else:
                self.mask, y = cuda.elementwise(
                    'T x, T mask1, T scale', 'T mask, T y',
                    '''
                    mask = mask1 * scale;
                    y = x * mask;
                    ''',
                    'spatial_dropout_fwd',
                )(x[0], mask, scale)
        return y, 
開發者ID:yukitsuji,項目名稱:voxelnet_chainer,代碼行數:25,代碼來源:spatial_dropout.py

示例4: backward

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import elementwise [as 別名]
def backward(self, inputs, gy):
        xp = cuda.get_array_module(inputs)
        x, W, b = inputs
        gy, = gy

        if xp is numpy:
            gx = W * gy
            gW = x * gy
        else:
            gx, gW = cuda.elementwise(
                'T x, T W, T b, T gy', 'T gx, T gW',
                'gx = W * gy; gW = x * gy;', 'affine_bwd'
            )(x, W, b, gy)
        gb = gy

        gW = xp.sum(gW, axis=(0, 2, 3), keepdims=True)
        gb = xp.sum(gb, axis=(0, 2, 3), keepdims=True)
        return gx, gW, gb 
開發者ID:wkentaro,項目名稱:chainer-mask-rcnn,代碼行數:20,代碼來源:affine_channel_2d.py

示例5: update_core_gpu

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import elementwise [as 別名]
def update_core_gpu(self, param):
        grad = param.grad
        if grad is None:
            return
        cuda.elementwise(
            'T grad, T lr, T alpha, T eps',
            'T param, T ms',
            '''ms = alpha * ms + (1 - alpha) * grad * grad;
               param -= lr * grad / sqrt(ms + eps);''',
            'rmsprop')(grad, self.hyperparam.lr, self.hyperparam.alpha,
                       self.hyperparam.eps, param.array, self.state['ms']) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:13,代碼來源:rmsprop_async.py

示例6: __call__

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import elementwise [as 別名]
def __call__(self, rule, param):
        if param.name == 'b':
            return
        p, g = param.array, param.grad
        if p is None or g is None:
            return
        with cuda.get_device_from_array(p) as dev:
            if int(dev) == -1:
                g += self.rate * p
            else:
                kernel = cuda.elementwise(
                    'T p, T decay', 'T g', 'g += decay * p', 'weight_decay')
                kernel(p, self.rate, g) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:15,代碼來源:nonbias_weight_decay.py

示例7: _noise_function

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import elementwise [as 別名]
def _noise_function(self, r):
        if self._kernel is None:
            self._kernel = cuda.elementwise(
                '', 'T r',
                '''r = copysignf(sqrtf(fabsf(r)), r);''',
                'noise_func')
        self._kernel(r) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:9,代碼來源:noisy_linear.py

示例8: forward_gpu

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import elementwise [as 別名]
def forward_gpu(self, inputs):
        n = len(inputs)
        ptrs = cuda.cupy.asarray([x.data.ptr for x in inputs],
                                 dtype=cuda.cupy.int64)
        y = cuda.elementwise(
            'T x0, int64 xs, int32 n_xs',
            'T y',
            'float** xs_ = (float**) xs;'
            'y = 0;'
            'for (size_t j = 0; j < n_xs; ++j) {'
            '  y += xs_[j][i];'
            '}',
            'sum_arrays'.format(n))(inputs[0], ptrs.data.ptr, len(ptrs))
        return y, 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:16,代碼來源:sum_arrays.py

示例9: backward_gpu

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import elementwise [as 別名]
def backward_gpu(self, inputs, grad_outputs):
        x, y, z = inputs
        gw, = grad_outputs

        gx, gy = cuda.elementwise(
            'T x, T y, T gw',
            'T gx, T gy',
            '''
               gx = y * gw;
               gy = x * gw;
            ''',
            'muladd_bwd')(x, y, gw)

        gz = gw
        return gx, gy, gz 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:17,代碼來源:mul_add.py

示例10: update_one_gpu

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import elementwise [as 別名]
def update_one_gpu(self, param, state):
        cuda.elementwise(
            'T grad, T lr, T alpha, T eps',
            'T param, T ms',
            '''ms = alpha * ms + (1 - alpha) * grad * grad;
               param -= lr * grad / sqrt(ms + eps);''',
            'rmsprop')(param.grad, self.lr, self.alpha, self.eps,
                       param.data, state['ms']) 
開發者ID:muupan,項目名稱:async-rl,代碼行數:10,代碼來源:rmsprop_async.py

示例11: __call__

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import elementwise [as 別名]
def __call__(self, opt):
        if cuda.available:
            kernel = cuda.elementwise(
                'T p, T decay', 'T g', 'g += decay * p', 'weight_decay')

        rate = self.rate
        for name, param in opt.target.namedparams():
            if name == 'b' or name.endswith('/b'):
                continue
            p, g = param.data, param.grad
            with cuda.get_device(p) as dev:
                if int(dev) == -1:
                    g += rate * p
                else:
                    kernel(p, rate, g) 
開發者ID:muupan,項目名稱:async-rl,代碼行數:17,代碼來源:nonbias_weight_decay.py

示例12: forward

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import elementwise [as 別名]
def forward(self, inputs):
        c_prev, x = inputs
        a, i, f, o = _extract_gates(x)
        batch = len(x)

        if isinstance(x, numpy.ndarray):
            self.a = numpy.tanh(a)
            self.i = _sigmoid(i)
            self.f = _sigmoid(f)
            self.o = _sigmoid(o)

            c_next = numpy.empty_like(c_prev)
            c_next[:batch] = self.a * self.i + self.f * c_prev[:batch]
            ungated_h = numpy.tanh(c_next[:batch])
            o_gate = self.o
        else:
            c_next = cuda.cupy.empty_like(c_prev)
            ungated_h = cuda.cupy.empty_like(c_next[:batch])
            o_gate = cuda.cupy.empty_like(c_next[:batch])
            cuda.elementwise(
                'T c_prev, T a, T i_, T f, T o', 'T c, T ungated_h, T o_gate',
                '''
                    COMMON_ROUTINE;
                    c = aa * ai + af * c_prev;
                    ungated_h = tanh(c);
                    o_gate = ao;
                ''',
                'lstm_fwd', preamble=_preamble)(
                    c_prev[:batch], a, i, f, o, c_next[:batch], ungated_h, o_gate)

        c_next[batch:] = c_prev[batch:]
        self.c = c_next[:batch]
        return c_next, ungated_h, o_gate 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:35,代碼來源:ln_lstm.py

示例13: update_one_gpu

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import elementwise [as 別名]
def update_one_gpu(self, param, state):
        cuda.elementwise(
            'T grad, T lr, T one_minus_beta1, T one_minus_beta2, T eps',
            'T param, T m, T v',
            '''m += one_minus_beta1 * (grad - m);
               v += one_minus_beta2 * (grad * grad - v);
               param -= lr * m / (sqrt(v) + eps);''',
            'adam')(param.grad, self.lr, 1 - self.beta1, 1 - self.beta2,
                    self.eps, param.data, state['m'], state['v'])
        self.num_step += 1 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:12,代碼來源:scheduled_adam.py

示例14: forward_gpu

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import elementwise [as 別名]
def forward_gpu(self, x):
        self.sigma_a_plus_b, y = cuda.elementwise(
            'T x1, T x2, T x3', 'T sigma_a_plus_b, T y',
            '''
                sigma_a_plus_b = tanh((x1 + x2) * 0.5) * 0.5 + 0.5;// 1 / (1 + exp(-(x1 + x2)));
                y = x3 * sigma_a_plus_b;
                ''',
            'sigmoid_a_plus_b_by_h_fwd')(x[0], x[1], x[2])
        return y, 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:11,代碼來源:faster_gru.py

示例15: backward_gpu

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import elementwise [as 別名]
def backward_gpu(self, x, gy):
        gx1, gx2, gx3 = cuda.elementwise(
            'T sigma_a_plus_b, T h, T gy', 'T gx1, T gx2, T gx3',
            '''
            gx3 = gy * sigma_a_plus_b;
            gx1 = h * gx3 * (1-sigma_a_plus_b);
            gx2 = gx1;
            ''',
            'sigmoid_bwd')(self.sigma_a_plus_b, x[2], gy[0])
        return gx1, gx2, gx3, 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:12,代碼來源:faster_gru.py


注:本文中的chainer.cuda.elementwise方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。