當前位置: 首頁>>代碼示例>>Python>>正文


Python cuda.cupy方法代碼示例

本文整理匯總了Python中chainer.cuda.cupy方法的典型用法代碼示例。如果您正苦於以下問題:Python cuda.cupy方法的具體用法?Python cuda.cupy怎麽用?Python cuda.cupy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.cuda的用法示例。


在下文中一共展示了cuda.cupy方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import cupy [as 別名]
def __init__(self, args):
        xp = cuda.cupy if args.gpu >= 0 else np
        xp.random.seed(args.seed)
        Wh_data = xp.array([[[[1], [-1]]]], dtype='f')
        Ww_data = xp.array([[[[1, -1]]]], dtype='f')
        self.Wh = chainer.Variable(Wh_data)
        self.Ww = chainer.Variable(Ww_data)
        self.args = args

        self.load_model()
        self.create_dir()
        self.get_img_var()
        self.create_target()
        self.create_image_plane()
        self.prepare_optimizer()
        self.create_lr_schedule() 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:18,代碼來源:invert.py

示例2: update

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import cupy [as 別名]
def update(self, s, i):
        """Update decoder state

        Args:
            s (any): Current (hidden, cell) states.  If ``None`` is specified 
                     zero-vector is used.
            i (int): input label.
        Return:
            (~chainer.Variable) updated decoder state
        """
        if cuda.get_device_from_array(s[0].data).id >= 0:
            xp = cuda.cupy
        else:
            xp = np

        v = chainer.Variable(xp.array([i],dtype=np.int32))
        x = self.embed(v)
        if s is not None:
            hy, cy, dy = self.lstm(s[0], s[1], [x])
        else:
            hy, cy, dy = self.lstm(None, None, [x])

        return hy, cy, dy 
開發者ID:dialogtekgeek,項目名稱:DSTC6-End-to-End-Conversation-Modeling,代碼行數:25,代碼來源:lstm_decoder.py

示例3: __call__

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import cupy [as 別名]
def __call__(self, trainer):
        iteration = trainer.updater.iteration

        with cuda.get_device_from_id(trainer.updater.get_optimizer('main').target._device_id), chainer.using_config('train', False):
            self.xp = np if trainer.updater.get_optimizer('main').target._device_id < 0 else cuda.cupy
            image = self.xp.asarray(self.image)
            predictor = trainer.updater.get_optimizer('main').target.predictor
            predictions, rois, bboxes = predictor(image[self.xp.newaxis, ...])

            backprop_visualizations = []
            for visanchor in self.visualization_anchors:
                vis_target = predictor
                for target in visanchor:
                    vis_target = getattr(vis_target, target)
                backprop_visualizations.append(self.visual_backprop.perform_visual_backprop(vis_target))

            self.render_rois(predictions, rois, bboxes, iteration, self.image.copy(), backprop_vis=backprop_visualizations) 
開發者ID:Bartzi,項目名稱:see,代碼行數:19,代碼來源:bbox_plotter.py

示例4: backward_gpu

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import cupy [as 別名]
def backward_gpu(self, inputs, grad_outputs):
        cupy = cuda.cupy
        x, t = inputs[:2]

        y = self.y
        gloss = grad_outputs[0]

        g_log_p = y
        g_log_p[cupy.arange(len(t)), cupy.maximum(t, 0)] -= 1

        g_log_p *= (t != self.ignore_label).reshape((len(t), 1))

        if self.reduce == 'mean':
            g_log_p *= gloss * self._coeff
        else:
            g_log_p *= gloss[:, None]

        ret = super(AdaptiveSoftmaxCrossEntropy, self).backward(
            inputs, (g_log_p, ))
        return ret 
開發者ID:chainer,項目名稱:models,代碼行數:22,代碼來源:adaptive_softmax.py

示例5: backprop_check

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import cupy [as 別名]
def backprop_check():
	xp = cuda.cupy if config.use_gpu else np
	duel = DDQN()

	state = xp.random.uniform(-1.0, 1.0, (2, config.rl_agent_history_length * config.ale_screen_channels, config.ale_scaled_screen_size[1], config.ale_scaled_screen_size[0])).astype(xp.float32)
	reward = [1, 0]
	action = [3, 4]
	episode_ends = [0, 0]
	next_state = xp.random.uniform(-1.0, 1.0, (2, config.rl_agent_history_length * config.ale_screen_channels, config.ale_scaled_screen_size[1], config.ale_scaled_screen_size[0])).astype(xp.float32)

	optimizer_conv = optimizers.Adam(alpha=config.rl_learning_rate, beta1=config.rl_gradient_momentum)
	optimizer_conv.setup(duel.conv)
	optimizer_fc = optimizers.Adam(alpha=config.rl_learning_rate, beta1=config.rl_gradient_momentum)
	optimizer_fc.setup(duel.fc)

	for i in xrange(10000):
		optimizer_conv.zero_grads()
		optimizer_fc.zero_grads()
		loss, _ = duel.forward_one_step(state, action, reward, next_state, episode_ends)
		loss.backward()
		optimizer_conv.update()
		optimizer_fc.update()
		print loss.data,
		print duel.conv.layer_2.W.data[0, 0, 0, 0],
		print duel.fc.layer_2.W.data[0, 0], 
開發者ID:musyoku,項目名稱:double-dqn,代碼行數:27,代碼來源:grad_check.py

示例6: __init__

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import cupy [as 別名]
def __init__(self, *, iterator, noise_iterator, optimizer_generator,
                 optimizer_critic, device=-1):

        if optimizer_generator.target.name is None:
            optimizer_generator.target.name = 'generator'

        if optimizer_critic.target.name is None:
            optimizer_critic.target.name = 'critic'

        iterators = {'main': iterator, 'z': noise_iterator}
        optimizers = {'generator': optimizer_generator,
                      'critic': optimizer_critic}

        super().__init__(iterators, optimizers, device=device)

        if device >= 0:
            cuda.get_device(device).use()
            [optimizer.target.to_gpu() for optimizer in optimizers.values()]

        self.xp = cuda.cupy if device >= 0 else np 
開發者ID:hvy,項目名稱:chainer-wasserstein-gan,代碼行數:22,代碼來源:updater.py

示例7: __init__

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import cupy [as 別名]
def __init__(self, in_channels, out_channels, ksize, stride=1, real=0, wscale=1.0):
        super(ConvolutionRBM, self).__init__(
            conv=L.Convolution2D(in_channels, out_channels, ksize, stride=stride, wscale=wscale),
        )

#        if gpu >= 0:
#            cuda.check_cuda_available()
#            xp = cuda.cupy # if gpu >= 0 else np
        self.conv.add_param("a", in_channels)  # dtype=xp.float32
        self.conv.a.data.fill(0.)
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.ksize = ksize
        self.real = real

        self.rbm_train = False  # default value is false 
開發者ID:corochann,項目名稱:SeRanet,代碼行數:18,代碼來源:convolution_rbm.py

示例8: sample_h_given_v

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import cupy [as 別名]
def sample_h_given_v(self, v0_sample):
        """ get a sample of the hiddens by gibbs sampling
        :param v0_sample: Variable, see vis above
        :return:
        h1_mean:   Variable Matrix(batch_size, out_channels, image_height_out, image_width_out)
        h1_sample: Variable Matrix(batch_size, out_channels, image_height_out, image_width_out)
                   - actual sample for hidden units, populated by 0 or 1.
        """
        h1_mean = self.propup(v0_sample)
        xp = cuda.get_array_module(h1_mean.data)
        if xp == cuda.cupy:
            h1_sample = cuda.cupy.random.random_sample(size=h1_mean.data.shape)
            h1_sample[:] = h1_sample[:] < h1_mean.data[:]
        else:  # xp == np
            h1_sample = np.random.binomial(size=h1_mean.data.shape, n=1, p=h1_mean.data)
        return h1_mean, Variable(h1_sample.astype(xp.float32)) 
開發者ID:corochann,項目名稱:SeRanet,代碼行數:18,代碼來源:convolution_rbm.py

示例9: mean_squared_error

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import cupy [as 別名]
def mean_squared_error(x0, x1, ignore_nan=False):
    """Mean squared error function.

    This function computes mean squared error between two variables. The mean
    is taken over the minibatch. Note that the error is not scaled by 1/2.

    Args:
        x0 (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \
        :class:`cupy.ndarray`): Input variable.
        x1 (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \
        :class:`cupy.ndarray`): Input variable.
        ignore_nan (bool): If `True`, this function compute mean squared error
            ignoring NaNs. The arithmetic mean is the sum of the non-NaN
            elements along the axis divided by the number of whole elements.

    Returns:
        ~chainer.Variable:
            A variable holding an array representing the mean squared
            error of two inputs.
    """
    return MeanSquaredError(ignore_nan).apply((x0, x1))[0] 
開發者ID:chainer,項目名稱:chainer-chemistry,代碼行數:23,代碼來源:mean_squared_error.py

示例10: train

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import cupy [as 別名]
def train(epoch=10, batch_size=32, gpu=False):
    if gpu:
        cuda.check_cuda_available()
    xp = cuda.cupy if gpu else np

    td = TrainingData(LABEL_FILE, img_root=IMAGES_ROOT, image_property=IMAGE_PROP)

    # make mean image
    if not os.path.isfile(MEAN_IMAGE_FILE):
        print("make mean image...")
        td.make_mean_image(MEAN_IMAGE_FILE)
    else:
        td.mean_image_file = MEAN_IMAGE_FILE

    # train model
    label_def = LabelingMachine.read_label_def(LABEL_DEF_FILE)
    model = alex.Alex(len(label_def))
    optimizer = optimizers.MomentumSGD(lr=0.01, momentum=0.9)
    optimizer.setup(model)
    epoch = epoch
    batch_size = batch_size

    print("Now our model is {0} classification task.".format(len(label_def)))
    print("begin training the model. epoch:{0} batch size:{1}.".format(epoch, batch_size))

    if gpu:
        model.to_gpu()

    for i in range(epoch):
        print("epoch {0}/{1}: (learning rate={2})".format(i + 1, epoch, optimizer.lr))
        td.shuffle(overwrite=True)

        for x_batch, y_batch in td.generate_batches(batch_size):
            x = chainer.Variable(xp.asarray(x_batch))
            t = chainer.Variable(xp.asarray(y_batch))

            optimizer.update(model, x, t)
            print("loss: {0}, accuracy: {1}".format(float(model.loss.data), float(model.accuracy.data)))

        serializers.save_npz(MODEL_FILE, model)
        optimizer.lr *= 0.97 
開發者ID:icoxfog417,項目名稱:mlimages,代碼行數:43,代碼來源:chainer_alex.py

示例11: test_calls_gpu

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import cupy [as 別名]
def test_calls_gpu(self):
        self.linear.to_gpu(0)
        self._test_calls(cuda.cupy) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:5,代碼來源:test_noisy_linear.py

示例12: test_calls_gpu_after_to_gpu

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import cupy [as 別名]
def test_calls_gpu_after_to_gpu(self):
        mu = self.linear.mu
        mu.to_gpu(0)
        self.linear = noisy_linear.FactorizedNoisyLinear(mu)
        self._test_calls(cuda.cupy) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:7,代碼來源:test_noisy_linear.py

示例13: test_randomness_gpu

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import cupy [as 別名]
def test_randomness_gpu(self):
        self.linear.to_gpu(0)
        self._test_randomness(cuda.cupy) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:5,代碼來源:test_noisy_linear.py

示例14: test_non_randomness_gpu

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import cupy [as 別名]
def test_non_randomness_gpu(self):
        self.linear.to_gpu(0)
        self._test_non_randomness(cuda.cupy) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:5,代碼來源:test_noisy_linear.py

示例15: extract_feature

# 需要導入模塊: from chainer import cuda [as 別名]
# 或者: from chainer.cuda import cupy [as 別名]
def extract_feature(self, x):
        xp = cuda.cupy if self.args.gpu >= 0 else np
        middles = dict(self.model.middle_layers(x))
        middle = middles[self.args.layer]
        if self.args.channels < 0:
            return middle
        else:
            m = middle.data[:, self.args.channels, :, :]
            m = xp.expand_dims(m, axis=1)
            middle = chainer.Variable(m)
            return middle 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:13,代碼來源:invert.py


注:本文中的chainer.cuda.cupy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。