本文整理匯總了Python中chainer.computational_graph.build_computational_graph方法的典型用法代碼示例。如果您正苦於以下問題:Python computational_graph.build_computational_graph方法的具體用法?Python computational_graph.build_computational_graph怎麽用?Python computational_graph.build_computational_graph使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.computational_graph
的用法示例。
在下文中一共展示了computational_graph.build_computational_graph方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test
# 需要導入模塊: from chainer import computational_graph [as 別名]
# 或者: from chainer.computational_graph import build_computational_graph [as 別名]
def test(self, cgp, model_file, comp_graph='comp_graph.dot', batchsize=256):
chainer.cuda.get_device(0).use() # Make a specified GPU current
model = CGP2CNN(cgp, self.n_class)
print('\tLoad model from', model_file)
serializers.load_npz(model_file, model)
model.to_gpu(0)
test_accuracy, test_loss = self.__test(model, batchsize)
print('\tparamNum={}'.format(model.param_num))
print('\ttest mean loss={}, test accuracy={}'.format(test_loss / self.test_data_num, test_accuracy / self.test_data_num))
if comp_graph is not None:
with open(comp_graph, 'w') as o:
g = computational_graph.build_computational_graph((model.loss,))
o.write(g.dump())
del g
print('\tCNN graph generated ({}).'.format(comp_graph))
return test_accuracy, test_loss
示例2: __call__
# 需要導入模塊: from chainer import computational_graph [as 別名]
# 或者: from chainer.computational_graph import build_computational_graph [as 別名]
def __call__(self, trainer):
try:
var = trainer.observation[self._root_name]
if not isinstance(var, variable.Variable):
raise TypeError('root value is not a Variable')
cg = computational_graph.build_computational_graph(
[var],
variable_style=self._variable_style,
function_style=self._function_style
).dump()
filename = os.path.join(trainer.out, self._filename)
with open(filename, 'w') as f:
f.write(cg)
if is_graphviz_available():
img_fn = os.path.splitext(self._filename)[0] + '.png'
image_filename = os.path.join(trainer.out, img_fn)
subprocess.check_call(
['dot', '-Tpng', filename, '-o', image_filename])
finally:
configuration.config.keep_graph_on_report = self._original_flag
示例3: test_save_normal_graphs
# 需要導入模塊: from chainer import computational_graph [as 別名]
# 或者: from chainer.computational_graph import build_computational_graph [as 別名]
def test_save_normal_graphs(self):
x = np.random.uniform(-1, 1, self.x_shape)
x = Variable(x.astype(np.float32))
for depth in six.moves.range(1, self.n_encdec + 1):
model = segnet.SegNet(
n_encdec=self.n_encdec, in_channel=self.x_shape[1])
y = model(x, depth)
cg = build_computational_graph(
[y],
variable_style=_var_style,
function_style=_func_style
).dump()
for e in range(1, self.n_encdec + 1):
self.assertTrue('encdec{}'.format(e) in model._children)
fn = 'tests/SegNet_x_depth-{}_{}.dot'.format(self.n_encdec, depth)
if os.path.exists(fn):
continue
with open(fn, 'w') as f:
f.write(cg)
subprocess.call(
'dot -Tpng {} -o {}'.format(
fn, fn.replace('.dot', '.png')), shell=True)
示例4: example_complexity
# 需要導入模塊: from chainer import computational_graph [as 別名]
# 或者: from chainer.computational_graph import build_computational_graph [as 別名]
def example_complexity(ex):
return sent_complexity(ex[0]) + sent_complexity(ex[1])
# def write_encdec_loss_computation_graph(encdec, dest_file):
# batch = [
# ([0,1,2], [3,5,6,7]),
# ([0, 0, 0,1,1], [6]),
# ([5], [2,3,0])
# ]
#
# src_batch, tgt_batch, src_mask = make_batch_src_tgt(batch, eos_idx=8, padding_idx=0, gpu=gpu, volatile="off", need_arg_sort=False)
#
# (total_loss, total_nb_predictions), attn = encdec(src_batch, tgt_batch, src_mask, raw_loss_info=True,
# noise_on_prev_word=noise_on_prev_word,
# use_previous_prediction=use_previous_prediction,
# mode="train",
# use_soft_prediction_feedback=use_soft_prediction_feedback,
# use_gumbel_for_soft_predictions=use_gumbel_for_soft_predictions,
# temperature_for_soft_predictions=temperature_for_soft_predictions)
# loss = total_loss / total_nb_predictions
#
# import chainer.computational_graph as c
# g = c.build_computational_graph([loss])
# with open(dest_file, 'w') as o:
# o.write(g.dump())
示例5: _check
# 需要導入模塊: from chainer import computational_graph [as 別名]
# 或者: from chainer.computational_graph import build_computational_graph [as 別名]
def _check(self, outputs, node_num, edge_num):
g = c.build_computational_graph(outputs)
self.assertEqual(len(g.nodes), node_num)
self.assertEqual(len(g.edges), edge_num)
示例6: test_raise_array_outputs
# 需要導入模塊: from chainer import computational_graph [as 別名]
# 或者: from chainer.computational_graph import build_computational_graph [as 別名]
def test_raise_array_outputs(self):
with self.assertRaises(TypeError):
c.build_computational_graph(self.z.array)
示例7: setUp
# 需要導入模塊: from chainer import computational_graph [as 別名]
# 或者: from chainer.computational_graph import build_computational_graph [as 別名]
def setUp(self):
self.x = variable.Variable(np.zeros((1, 2)).astype(np.float32))
self.y = 2 * self.x
self.f = self.y.creator_node
self.g = c.build_computational_graph((self.y,))
示例8: test_dont_show_name
# 需要導入模塊: from chainer import computational_graph [as 別名]
# 或者: from chainer.computational_graph import build_computational_graph [as 別名]
def test_dont_show_name(self):
g = c.build_computational_graph(
(self.x1, self.x2, self.y), show_name=False)
dotfile_content = g.dump()
for var in [self.x1, self.x2, self.y]:
self.assertNotIn('label="%s:' % var.name, dotfile_content)
示例9: test_randir
# 需要導入模塊: from chainer import computational_graph [as 別名]
# 或者: from chainer.computational_graph import build_computational_graph [as 別名]
def test_randir(self):
for rankdir in ['TB', 'BT', 'LR', 'RL']:
g = c.build_computational_graph((self.y,), rankdir=rankdir)
self.assertIn('rankdir=%s' % rankdir, g.dump())
示例10: test_randir_invalid
# 需要導入模塊: from chainer import computational_graph [as 別名]
# 或者: from chainer.computational_graph import build_computational_graph [as 別名]
def test_randir_invalid(self):
self.assertRaises(ValueError,
c.build_computational_graph, (self.y,), rankdir='TL')
示例11: dump_comp_graph
# 需要導入模塊: from chainer import computational_graph [as 別名]
# 或者: from chainer.computational_graph import build_computational_graph [as 別名]
def dump_comp_graph(filename, vs):
g = C.build_computational_graph(vs)
with open(filename, 'w') as o:
o.write(g.dump())
示例12: train_loop
# 需要導入模塊: from chainer import computational_graph [as 別名]
# 或者: from chainer.computational_graph import build_computational_graph [as 別名]
def train_loop():
# Trainer
graph_generated = False
while True:
while data_q.empty():
time.sleep(0.1)
inp = data_q.get()
if inp == 'end': # quit
res_q.put('end')
break
elif inp == 'train': # restart training
res_q.put('train')
model.train = True
continue
elif inp == 'val': # start validation
res_q.put('val')
serializers.save_npz(args.out, model)
serializers.save_npz(args.outstate, optimizer)
model.train = False
continue
volatile = 'off' if model.train else 'on'
x = chainer.Variable(xp.asarray(inp[0]), volatile=volatile)
t = chainer.Variable(xp.asarray(inp[1]), volatile=volatile)
if model.train:
optimizer.update(model, x, t)
if not graph_generated:
with open('graph.dot', 'w') as o:
o.write(computational_graph.build_computational_graph(
(model.loss,)).dump())
print('generated graph', file=sys.stderr)
graph_generated = True
else:
model(x, t)
res_q.put((float(model.loss.data), float(model.accuracy.data)))
del x, t
# Invoke threads
示例13: test_save_loss_graphs_no_class_weight
# 需要導入模塊: from chainer import computational_graph [as 別名]
# 或者: from chainer.computational_graph import build_computational_graph [as 別名]
def test_save_loss_graphs_no_class_weight(self):
x = np.random.uniform(-1, 1, self.x_shape)
x = Variable(x.astype(np.float32))
t = np.random.randint(
0, 12, (self.x_shape[0], self.x_shape[2], self.x_shape[3]))
t = Variable(t.astype(np.int32))
for depth in six.moves.range(1, self.n_encdec + 1):
model = segnet.SegNet(n_encdec=self.n_encdec, n_classes=12,
in_channel=self.x_shape[1])
model = segnet.SegNetLoss(
model, class_weight=None, train_depth=depth)
y = model(x, t)
cg = build_computational_graph(
[y],
variable_style=_var_style,
function_style=_func_style
).dump()
for e in range(1, self.n_encdec + 1):
self.assertTrue(
'encdec{}'.format(e) in model.predictor._children)
fn = 'tests/SegNet_xt_depth-{}_{}.dot'.format(self.n_encdec, depth)
if os.path.exists(fn):
continue
with open(fn, 'w') as f:
f.write(cg)
subprocess.call(
'dot -Tpng {} -o {}'.format(
fn, fn.replace('.dot', '.png')), shell=True)
示例14: backprop
# 需要導入模塊: from chainer import computational_graph [as 別名]
# 或者: from chainer.computational_graph import build_computational_graph [as 別名]
def backprop(self,t,distill=False):
x=Tensor.context
self.optimizer.zero_grads()
if distill:
loss = self.func.getLossDistill(x.content,t.content)
accuracy = 0.0
else:
loss,accuracy = self.func.getLoss(x.content,t.content)
accuracy = accuracy.data
loss.backward()
self.optimizer.update()
if not self.graph_generated:
#with open('graph.dot', 'w') as o:
# o.write(c.build_computational_graph((loss,), False).dump())
with open('graph.wo_split.dot', 'w') as o:
o.write(c.build_computational_graph((loss,), True).dump())
print('generated graph')
self.graph_generated = True
return loss.data,accuracy
示例15: backprop
# 需要導入模塊: from chainer import computational_graph [as 別名]
# 或者: from chainer.computational_graph import build_computational_graph [as 別名]
def backprop(self,t,distill=False):
x=Tensor.context
self.optimizer.zero_grads()
if distill:
t = chainer.Variable(Deel.xp.asarray([t.content.data],dtype=Deel.xp.float32), volatile='off')
loss = self.func.getLossDistill(x.content,t)
accuracy = 0.0
else:
loss,accuracy = self.func.getLoss(x.content,t.content)
accuracy = accuracy.data
loss.backward()
self.optimizer.update()
if not self.graph_generated:
#with open('graph.dot', 'w') as o:
# o.write(c.build_computational_graph((loss,), False).dump())
with open('graph.wo_split.dot', 'w') as o:
o.write(c.build_computational_graph((loss,), True).dump())
print('generated graph')
self.graph_generated = True
return loss.data,accuracy