本文整理匯總了Python中chainer.backends方法的典型用法代碼示例。如果您正苦於以下問題:Python chainer.backends方法的具體用法?Python chainer.backends怎麽用?Python chainer.backends使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer
的用法示例。
在下文中一共展示了chainer.backends方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: forward_expected
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import backends [as 別名]
def forward_expected(self, inputs):
"""
Current forward_expected implementation depends on
F.convolution_2d itself and thus it's only capable
of checking consistency between backends, not absolute
correctness of computations
"""
if self.nobias:
x, W = inputs
b = None
else:
x, W, b = inputs
with chainer.using_config('use_ideep', 'never'):
y_expected = F.convolution_2d(
x, W, b, stride=self.stride, pad=self.pad,
cover_all=self.cover_all, dilate=self.dilate,
groups=self.groups)
if self.old_numpy_fp16:
return y_expected.array*0,
return y_expected.array,
示例2: forward_expected
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import backends [as 別名]
def forward_expected(self, inputs):
"""
Current forward_expected implementation depends on
F.convolution_nd itself and thus it's only capable
of checking consistency between backends, not absolute
correctness of computations
"""
if self.nobias:
x, W = inputs
b = None
else:
x, W, b = inputs
y_expected = F.convolution_nd(
x, W, b, stride=self.stride, pad=self.pad,
cover_all=self.cover_all, dilate=self.dilate,
groups=self.groups)
return y_expected.array,
示例3: forward_expected
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import backends [as 別名]
def forward_expected(self, inputs):
"""
Current forward_expected implementation depends on
F.deconvolution_nd itself and thus it's only capable
of checking consistency between backends, not absolute
correctness of computations
"""
if self.nobias:
x, W = inputs
b = None
else:
x, W, b = inputs
y_expected = F.deconvolution_nd(
x, W, b, stride=self.stride, pad=self.pad,
outsize=self.outsize, dilate=self.dilate,
groups=self.groups)
return y_expected.array,
示例4: forward_expected
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import backends [as 別名]
def forward_expected(self, inputs):
"""
Current forward_expected implementation depends on
F.deconvolution_2d itself and thus it's only capable
of checking consistency between backends, not absolute
correctness of computations
"""
if self.nobias:
x, W = inputs
b = None
else:
x, W, b = inputs
y_expected = F.deconvolution_2d(
x, W, b, stride=self.stride, pad=self.pad,
outsize=self.outsize, dilate=self.dilate,
groups=self.groups)
return y_expected.array,
示例5: setup_communicator
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import backends [as 別名]
def setup_communicator(gpu):
if gpu:
communicator = chainermn.create_communicator('flat')
chainer.backends.cuda.get_device_from_id(
communicator.intra_rank).use()
else:
communicator = chainermn.create_communicator('naive')
if communicator.size < 2:
pytest.skip('This test is for multinode only')
rank_next = communicator.rank + 1
rank_prev = communicator.rank - 1
if rank_prev < 0:
rank_prev = None
if rank_next >= communicator.size:
rank_next = None
return communicator, rank_prev, rank_next
示例6: check_crossing_model
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import backends [as 別名]
def check_crossing_model(gpu, param):
communicator, rank_next, rank_prev = create_communicator(gpu)
n, d = 100, 10
X = np.random.randn(n, d).astype(param.dtype)
Y = (np.random.rand(n) * 2).astype(np.int32)
with chainer.using_config('dtype', param.dtype):
if communicator.rank == 0:
model = L.Classifier(Cross0(
d, communicator, rank_next, rank_prev))
else:
model = L.Classifier(Cross1(
d, communicator, rank_next, rank_prev))
if gpu:
model.to_device(cupy.cuda.Device())
X = chainer.backends.cuda.to_gpu(X)
Y = chainer.backends.cuda.to_gpu(Y)
for i in range(n):
err = model(X[i:i + 1], Y[i:i + 1])
err.backward()
示例7: reduce
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import backends [as 別名]
def reduce(in_params, out_params, map_expr, reduce_expr, post_map_expr,
identity, name, **kwargs):
"""Creates a global reduction kernel function.
This function uses :func:`~chainer.backends.cuda.memoize` to cache the
resulting kernel object, i.e. the resulting kernel object is cached for
each argument combination and CUDA device.
The arguments are the same as those for
:class:`cupy.ReductionKernel`, except that the ``name`` argument is
mandatory.
"""
check_cuda_available()
return cupy.ReductionKernel(
in_params, out_params, map_expr, reduce_expr, post_map_expr,
identity, name, **kwargs)
示例8: _list_to_flat
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import backends [as 別名]
def _list_to_flat(array_list):
xp = chainer.backends.cuda.get_array_module(array_list[0])
indices = xp.concatenate(
[i * xp.ones((len(array),), dtype=np.int32) for
i, array in enumerate(array_list)], axis=0)
flat = xp.concatenate(array_list, axis=0)
return flat, indices
示例9: decode
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import backends [as 別名]
def decode(self, segms, bboxes, labels, sizes):
"""Decodes back to masks.
Args:
segms (iterable of arrays): An iterable of arrays of
shape :math:`(R_n, n\_class, M, M)`.
bboxes (iterable of arrays): An iterable of arrays of
shape :math:`(R_n, 4)`.
labels (iterable of arrays): An iterable of arrays of
shape :math:`(R_n,)`.
sizes (list of tuples of two ints): A list of
:math:`(H_n, W_n)`, where :math:`H_n` and :math:`W_n`
are height and width of the :math:`n`-th image.
Returns:
list of arrays:
This list contains instance segmentation for each image
in the batch.
More precisely, this is a list of boolean arrays of shape
:math:`(R'_n, H_n, W_n)`, where :math:`R'_n` is the number of
bounding boxes in the :math:`n`-th image.
"""
xp = chainer.backends.cuda.get_array_module(*segms)
if xp != np:
raise ValueError(
'MaskHead.decode only supports numpy inputs for now.')
masks = []
for bbox, segm, label, size in zip(
bboxes, segms, labels, sizes):
if len(segm) > 0:
masks.append(
segm_to_mask(segm[np.arange(len(label)), label + 1],
bbox, size))
else:
masks.append(np.zeros((0,) + size, dtype=np.bool))
return masks
示例10: check_backward
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import backends [as 別名]
def check_backward(self, x_data, y_grad):
slices = []
for i, s in enumerate(self.slices):
if isinstance(s, numpy.ndarray):
s = chainer.backends.cuda.cupy.array(s)
if isinstance(s, list):
s = chainer.backends.cuda.cupy.array(s, dtype=numpy.int32)
slices.append(s)
slices = tuple(slices)
def f(x):
return functions.get_item(x, slices)
gradient_check.check_backward(
f, (x_data,), y_grad, dtype='d')
示例11: test_forward_int
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import backends [as 別名]
def test_forward_int(self, src_backend_config, dst_backend_config):
assert dst_backend_config.xp is not chainerx
src_device = src_backend_config.device
dst_device = dst_backend_config.device
if dst_device.xp is numpy:
dst_device_spec = -1
elif dst_device.xp is chainer.backends.cuda.cupy:
dst_device_spec = dst_device.device.id
else:
assert False, dst_device
self.check_forward(
dst_device_spec,
src_device,
dst_device)
示例12: test_forward_str
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import backends [as 別名]
def test_forward_str(self, src_backend_config, dst_backend_config):
assert dst_backend_config.xp is not chainerx
src_device = src_backend_config.device
dst_device = dst_backend_config.device
if dst_device.xp is numpy:
dst_device_spec = '@numpy'
elif dst_device.xp is chainer.backends.cuda.cupy:
dst_device_spec = '@cupy:{}'.format(dst_device.device.id)
else:
assert False, dst_device
self.check_forward(
dst_device_spec,
src_device,
dst_device)
示例13: test_call_cudnn_forward
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import backends [as 別名]
def test_call_cudnn_forward(self):
with chainer.using_config('use_cudnn', self.use_cudnn):
with testing.patch(
'chainer.backends.cuda.get_cudnn_dropout_states') as func:
self.forward()
assert func.called == (self.use_cudnn == 'always')
示例14: test_call_cudnn_backward
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import backends [as 別名]
def test_call_cudnn_backward(self):
with chainer.using_config('use_cudnn', self.use_cudnn):
y = self.forward()
y.grad = self.gy
with testing.patch(
'chainer.backends.cuda.get_cudnn_dropout_states') as func:
y.backward()
assert func.called == (self.use_cudnn == 'always')
示例15: test_invalid
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import backends [as 別名]
def test_invalid(self):
eps = -0.1
if chainer.backends.cuda.libcudnn.get_build_version() < 7500:
eps = 2e-6
with self.assertRaises(RuntimeError):
functions.fixed_batch_normalization(*self.args, eps=eps)