本文整理匯總了Python中chainer.backends.cuda.to_gpu方法的典型用法代碼示例。如果您正苦於以下問題:Python cuda.to_gpu方法的具體用法?Python cuda.to_gpu怎麽用?Python cuda.to_gpu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.backends.cuda
的用法示例。
在下文中一共展示了cuda.to_gpu方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_forward_gpu
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_gpu [as 別名]
def test_forward_gpu(self):
self.f.add_hook(self.h)
self.f(chainer.Variable(cuda.to_gpu(self.x)),
chainer.Variable(cuda.to_gpu(self.x)))
expect = r'''^function\tDummyFunction
input data
<variable at 0x[0-9a-f]+>
- device: <CUDA Device 0>
- backend: <(type|class) 'cupy.core.core.ndarray'>
- shape: \(3L?, 5L?\)
- dtype: float32
- statistics: mean=[0-9.\-e]+, std=[0-9.\-e]+
- grad: None
<variable at 0x[0-9a-f]+>
- device: <CUDA Device 0>
- backend: <(type|class) 'cupy.core.core.ndarray'>
- shape: \(3L?, 5L?\)
- dtype: float32
- statistics: mean=[0-9.\-e]+, std=[0-9.\-e]+
- grad: None$
'''
actual = self.io.getvalue()
self.assertTrue(re.match(expect, actual), actual)
示例2: test_inconsistent_input_backends
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_gpu [as 別名]
def test_inconsistent_input_backends(self):
class FunctionNode(chainer.FunctionNode):
def forward(self, inputs):
return inputs
f = FunctionNode()
# Cause inconsistency between inputs
x1 = cuda.to_gpu(self.x1)
x1 = chainer.Variable(x1)
x2 = chainer.Variable(self.x2)
with self.assertRaises(TypeError):
f.apply((x1, x2))
示例3: to_gpu
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_gpu [as 別名]
def to_gpu(self):
self.parameters.to_gpu()
示例4: compute_observation_representation
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_gpu [as 別名]
def compute_observation_representation(self, images, viewpoints):
batch_size = images.shape[0]
num_views = images.shape[1]
# (batch, views, channels, height, width) -> (batch * views, channels, height, width)
images = images.reshape((batch_size * num_views, ) + images.shape[2:])
viewpoints = viewpoints.reshape((batch_size * num_views, 7, 1, 1))
# Transfer to gpu
xp = self.parameters.xp
if xp is cupy:
images = cuda.to_gpu(images)
viewpoints = cuda.to_gpu(viewpoints)
# Add noise
# images += xp.random.uniform(
# 0, 1.0 / 256.0, size=images.shape).astype(xp.float32)
r = self.representation_network(images, viewpoints)
# (batch * views, channels, height, width) -> (batch, views, channels, height, width)
r = r.reshape((batch_size, num_views) + r.shape[1:])
# Sum element-wise across views
r = cf.sum(r, axis=1)
return r
示例5: argsort
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_gpu [as 別名]
def argsort(x):
xp = cuda.get_array_module(x)
i = np.argsort(cuda.to_cpu(x))
if xp is np:
return i
else:
return cuda.to_gpu(i)
# to avoid out of memory
示例6: choice
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_gpu [as 別名]
def choice(x, size):
xp = cuda.get_array_module(x)
y = np.random.choice(cuda.to_cpu(x), size, replace=False)
if xp is np:
return y
else:
return cuda.to_gpu(y)
示例7: __call__
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_gpu [as 別名]
def __call__(self, inputs, device=None):
"""Convert DALI arrays to Numpy/CuPy arrays"""
xp = chainer.backend.get_array_module(self.perturbation)
if xp is not cuda.cupy:
self.perturbation = cuda.to_gpu(self.perturbation, device)
outputs = []
for i in range(len(inputs)):
x = inputs[i].as_tensor()
if (isinstance(x, dali.backend_impl.TensorCPU)):
x = np.array(x)
if x.ndim == 2 and x.shape[1] == 1:
x = x.squeeze(axis=1)
if device is not None and device >= 0:
x = cuda.to_gpu(x, device)
elif (isinstance(x, dali.backend_impl.TensorGPU)):
x_cupy = cuda.cupy.empty(shape=x.shape(), dtype=x.dtype())
# Synchronization is necessary here to avoid data corruption
# because DALI and CuPy will use different CUDA streams.
cuda.cupy.cuda.runtime.deviceSynchronize()
# copy data from DALI array to CuPy array
x.copy_to_external(ctypes.c_void_p(x_cupy.data.ptr))
cuda.cupy.cuda.runtime.deviceSynchronize()
x = x_cupy.astype(chainer.get_dtype())
if self.perturbation is not None:
x = x - self.perturbation
if device is not None and device < 0:
x = cuda.to_cpu(x)
else:
raise ValueError('Unexpected object')
outputs.append(x)
return tuple(outputs)
示例8: dali_converter
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_gpu [as 別名]
def dali_converter(inputs, device=None):
"""Convert DALI arrays to Numpy/CuPy arrays"""
outputs = []
for i in range(len(inputs)):
x = inputs[i].as_tensor()
if (isinstance(x, dali.backend_impl.TensorCPU)):
x = np.array(x)
if x.ndim == 2 and x.shape[1] == 1:
x = x.squeeze(axis=1)
if device is not None and device >= 0:
x = cuda.to_gpu(x, device)
elif (isinstance(x, dali.backend_impl.TensorGPU)):
x_cupy = cuda.cupy.empty(shape=x.shape(), dtype=x.dtype())
# Synchronization is necessary here to avoid data corruption
# because DALI and CuPy will use different CUDA streams.
cuda.cupy.cuda.runtime.deviceSynchronize()
# copy data from DALI array to CuPy array
x.copy_to_external(ctypes.c_void_p(x_cupy.data.ptr))
cuda.cupy.cuda.runtime.deviceSynchronize()
x = x_cupy.astype(chainer.get_dtype())
if device is not None and device < 0:
x = cuda.to_cpu(x)
else:
raise ValueError('Unexpected object')
outputs.append(x)
return tuple(outputs)
示例9: test_forward_gpu
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_gpu [as 別名]
def test_forward_gpu(self):
self.check_forward(cuda.to_gpu(self.x))
示例10: test_backward_gpu
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_gpu [as 別名]
def test_backward_gpu(self):
self.check_backward(cuda.to_gpu(self.x), cuda.to_gpu(self.gy))
示例11: test_forward_gpu
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_gpu [as 別名]
def test_forward_gpu(self):
with testing.assert_warns(DeprecationWarning):
self.layer.to_gpu()
self.check_forward(cuda.to_gpu(self.x))
示例12: test_forward_gpu
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_gpu [as 別名]
def test_forward_gpu(self):
with testing.assert_warns(DeprecationWarning):
self.l.to_gpu()
self.check_forward(cuda.to_gpu(self.x))
示例13: test_backward_gpu
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_gpu [as 別名]
def test_backward_gpu(self):
with testing.assert_warns(DeprecationWarning):
self.l.to_gpu()
self.check_backward(cuda.to_gpu(self.x), cuda.to_gpu(self.gy))
示例14: setUp
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_gpu [as 別名]
def setUp(self):
cuda.memory_pool.free_all_blocks()
self.h = function_hooks.CupyMemoryProfileHook()
f1 = functions.exp
f2 = functions.relu
self.x = numpy.random.uniform(-0.1, 0.1, (3, 5)).astype(numpy.float32)
x = cuda.to_gpu(self.x)
with self.h:
f1(chainer.Variable(x))
f1(chainer.Variable(x))
f2(chainer.Variable(x))
f2(chainer.Variable(x))
示例15: test_backward_gpu
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_gpu [as 別名]
def test_backward_gpu(self):
y = self.f(chainer.Variable(cuda.to_gpu(self.x)),
chainer.Variable(cuda.to_gpu(self.x)))
y.grad = cuda.to_gpu(self.gy)
self.f.add_hook(self.h)
y.backward()
expect = r'''^function\tDummyFunction
input data
<variable at 0x[0-9a-f]+>
- device: <CUDA Device 0>
- backend: <(type|class) 'cupy.core.core.ndarray'>
- shape: \(3L?, 5L?\)
- dtype: float32
- statistics: mean=[0-9.\-e]+, std=[0-9.\-e]+
- grad: None
\(removed\)
output gradient
<variable at 0x[0-9a-f]+>
- device: <CUDA Device 0>
- backend: <(type|class) 'cupy.core.core.ndarray'>
- shape: \(3L?, 5L?\)
- dtype: float32
- statistics: mean=[0-9.\-e]+, std=[0-9.\-e]+
- grad: mean=[0-9.\-e]+, std=[0-9.\-e]+$
'''
actual = self.io.getvalue()
self.assertTrue(re.match(expect, actual), actual)