當前位置: 首頁>>代碼示例>>Python>>正文


Python cuda.to_cpu方法代碼示例

本文整理匯總了Python中chainer.backends.cuda.to_cpu方法的典型用法代碼示例。如果您正苦於以下問題:Python cuda.to_cpu方法的具體用法?Python cuda.to_cpu怎麽用?Python cuda.to_cpu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.backends.cuda的用法示例。


在下文中一共展示了cuda.to_cpu方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_cpu [as 別名]
def forward(self, xs, ilens):
        '''BLSTM forward (the modified version)

        :param xs:
        :param ilens:
        :return:
        '''
        logging.info(self.__class__.__name__ + ' input lengths: ' + str(ilens))
        # need to move ilens to cpu
        ilens = cuda.to_cpu(ilens)
        hy, cy, ys = self.nblstm(None, None, xs)
        ys = self.l_last(F.vstack(ys))  # (sum _utt frame_utt) x dim
        xs = F.split_axis(ys, np.cumsum(ilens[:-1]), axis=0)
        del hy, cy

        # final tanh operation
        xs = F.split_axis(F.tanh(F.vstack(xs)), np.cumsum(ilens[:-1]), axis=0)

        # EDIT(hamaji): Unnecessary, as `force_tuple` is True by default.
        # # 1 utterance case, it becomes an array, so need to make a utt tuple
        # if not isinstance(xs, tuple):
        #     xs = [xs]

        return xs, ilens  # x: utt list of frame x dim 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:26,代碼來源:EspNet_BLSTM.py

示例2: original

# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_cpu [as 別名]
def original(self, xs, ilens):
        '''BLSTM forward (the original implementation)

        :param xs:
        :param ilens:
        :return:
        '''
        logging.info(self.__class__.__name__ + ' input lengths: ' + str(ilens))
        # need to move ilens to cpu
        ilens = cuda.to_cpu(ilens)
        hy, cy, ys = self.nblstm(None, None, xs)
        ys = self.l_last(F.vstack(ys))  # (sum _utt frame_utt) x dim
        xs = F.split_axis(ys, np.cumsum(ilens[:-1]), axis=0)
        del hy, cy

        # final tanh operation
        xs = F.split_axis(F.tanh(F.vstack(xs)), np.cumsum(ilens[:-1]), axis=0)

        # 1 utterance case, it becomes an array, so need to make a utt tuple
        if not isinstance(xs, tuple):
            xs = [xs]

        return xs, ilens  # x: utt list of frame x dim 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:25,代碼來源:EspNet_BLSTM.py

示例3: _check_deepcopy

# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_cpu [as 別名]
def _check_deepcopy(self, link):
        self.assertIsInstance(link._params, set)
        self.assertIsInstance(link._persistent, set)
        self.assertTrue(hasattr(link, 'x'))
        self.assertTrue(hasattr(link, 'y'))
        self.assertTrue(hasattr(link, 'u'))
        self.assertTrue(hasattr(link, 'p'))
        self.assertIsNot(link.x, self.link.x)
        self.assertIsNot(link.x.data, self.link.x.data)
        numpy.testing.assert_array_equal(cuda.to_cpu(link.x.data),
                                         cuda.to_cpu(self.link.x.data))
        self.assertIsNot(link.y, self.link.y)
        self.assertIsNot(link.y.data, self.link.y.data)
        numpy.testing.assert_array_equal(cuda.to_cpu(link.y.data),
                                         cuda.to_cpu(self.link.y.data))
        self.assertIsNone(link.u.data)
        self.assertIsNot(link.p, self.link.p)
        self.assertEqual(link.name, self.link.name) 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:test_link.py

示例4: test_to_cpu_on_cpu

# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_cpu [as 別名]
def test_to_cpu_on_cpu(self):
        x = self.link.x.data
        gx = self.link.x.grad
        y = self.link.y.data
        gy = self.link.y.grad
        p = self.link.p
        with testing.assert_warns(DeprecationWarning):
            self.link.to_cpu()
        self.assertIs(self.link.x.data, x)
        self.assertIs(self.link.x.grad, gx)
        self.assertIs(self.link.y.data, y)
        self.assertIs(self.link.y.grad, gy)
        self.assertIsNone(self.link.u.data)
        u = self.link.u
        with pytest.raises(RuntimeError):
            u.grad
        self.assertIs(self.link.p, p) 
開發者ID:chainer,項目名稱:chainer,代碼行數:19,代碼來源:test_link.py

示例5: test_to_cpu

# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_cpu [as 別名]
def test_to_cpu(self):
        self.set_count_parameters()
        with testing.assert_warns(DeprecationWarning):
            self.c2.to_gpu()
        with testing.assert_warns(DeprecationWarning):
            self.c2.to_cpu()
        self.assertIs(self.c2.xp, numpy)
        self.assertIs(self.c1.xp, numpy)
        self.assertIs(self.l1.xp, numpy)
        self.assertIs(self.l2.xp, numpy)
        self.assertIs(self.l3.xp, numpy)
        self.assertIsInstance(self.l1.x.data, numpy.ndarray)
        self.assertIsInstance(self.l1.x.grad, numpy.ndarray)
        self.assertIsInstance(self.l2.x.data, numpy.ndarray)
        self.assertIsInstance(self.l2.x.grad, numpy.ndarray)
        self.assertIsNone(self.l3.x.data)
        self.assertIsNone(self.l3.x.grad)

        self.l3.x.initialize(3)
        self.assertIsInstance(self.l3.x.data, numpy.ndarray)
        self.assertIsInstance(self.l3.x.grad, numpy.ndarray) 
開發者ID:chainer,項目名稱:chainer,代碼行數:23,代碼來源:test_link.py

示例6: test_intel64_to_cpu

# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_cpu [as 別名]
def test_intel64_to_cpu(self):
        link = self.link
        with testing.assert_warns(DeprecationWarning):
            link.to_intel64()
        assert isinstance(link.device, backend.Intel64Device)
        with testing.assert_warns(DeprecationWarning):
            link.to_cpu()
        assert isinstance(link.device, backend.CpuDevice)

        # Arrays should be converted to numpy.ndarray

        # Initialized parameter
        assert isinstance(link.y.data, numpy.ndarray)
        _assert_variable_array_equal(link.y, self.y_array)
        # Uninitialized parameter
        assert link.v.data is None
        # Persistent ndarray
        assert isinstance(link.pa, numpy.ndarray)
        _assert_arrays_equal(link.pa, self.pa_array)
        # Persistent scalar
        assert link.ps == self.ps_scalar 
開發者ID:chainer,項目名稱:chainer,代碼行數:23,代碼來源:test_link.py

示例7: check_tuple_dataset

# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_cpu [as 別名]
def check_tuple_dataset(self, x0, x1):
        td = datasets.TupleDataset(x0, x1)
        self.assertEqual(len(td), len(x0))

        for i in range(len(x0)):
            example = td[i]
            self.assertEqual(len(example), 2)

            numpy.testing.assert_array_equal(
                cuda.to_cpu(example[0]), cuda.to_cpu(x0[i]))
            numpy.testing.assert_array_equal(
                cuda.to_cpu(example[1]), cuda.to_cpu(x1[i]))

        example_range = td[0: len(x0)]
        for i in range(len(x0)):
            example = example_range[i]
            self.assertEqual(len(example), 2)

            numpy.testing.assert_array_equal(
                cuda.to_cpu(example[0]), cuda.to_cpu(x0[i]))
            numpy.testing.assert_array_equal(
                cuda.to_cpu(example[1]), cuda.to_cpu(x1[i])) 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:test_tuple_dataset.py

示例8: check_dict_dataset

# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_cpu [as 別名]
def check_dict_dataset(self, x, y):
        dd = datasets.DictDataset(x=x, y=y)
        self.assertEqual(len(dd), len(x))

        for i in range(len(x)):
            example = dd[i]
            self.assertIn('x', example)
            self.assertIn('y', example)

            numpy.testing.assert_array_equal(
                cuda.to_cpu(example['x']), cuda.to_cpu(x[i]))
            numpy.testing.assert_array_equal(
                cuda.to_cpu(example['y']), cuda.to_cpu(y[i]))

        example_range = dd[0: len(x)]
        for i in range(len(x)):
            example = example_range[i]
            self.assertIn('x', example)
            self.assertIn('y', example)

            numpy.testing.assert_array_equal(
                cuda.to_cpu(example['x']), cuda.to_cpu(x[i]))
            numpy.testing.assert_array_equal(
                cuda.to_cpu(example['y']), cuda.to_cpu(y[i])) 
開發者ID:chainer,項目名稱:chainer,代碼行數:26,代碼來源:test_dict_dataset.py

示例9: check_extract

# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_cpu [as 別名]
def check_extract(self):
        x1 = numpy.random.uniform(0, 255, (320, 240, 3)).astype(numpy.uint8)
        x2 = numpy.random.uniform(0, 255, (320, 240)).astype(numpy.uint8)

        with numpy.errstate(divide='ignore'):
            result = self.link.extract([x1, x2], layers=['res3', 'pool5'])
            assert len(result) == 2
            y1 = cuda.to_cpu(result['res3'].data)
            assert y1.shape == (2, 512, 28, 28)
            assert y1.dtype == self.dtype
            y2 = cuda.to_cpu(result['pool5'].data)
            assert y2.shape == (2, 2048)
            assert y2.dtype == self.dtype

            x3 = numpy.random.uniform(0, 255, (80, 60)).astype(numpy.uint8)
            result = self.link.extract([x3], layers=['res2'], size=None)
            assert len(result) == 1
            y3 = cuda.to_cpu(result['res2'].data)
            assert y3.shape == (1, 256, 20, 15)
            assert y3.dtype == self.dtype 
開發者ID:chainer,項目名稱:chainer,代碼行數:22,代碼來源:test_vision.py

示例10: check_forward

# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_cpu [as 別名]
def check_forward(self, theta, output_shape):
        grid = functions.spatial_transformer_grid(theta, output_shape).data

        theta = cuda.to_cpu(theta)
        B = theta.shape[0]
        H, W = output_shape

        expected = []
        for b in range(B):
            for i in numpy.linspace(-1., 1., H):
                for j in numpy.linspace(-1., 1., W):
                    coord = numpy.array([j, i, 1])
                    expected.append(self.theta[b].dot(coord))
        expected = numpy.array(
            expected).reshape(B, H, W, 2).transpose(0, 3, 1, 2)
        testing.assert_allclose(grid, expected, **self.check_forward_options)
        self.assertEqual(grid.dtype, self.dtype) 
開發者ID:chainer,項目名稱:chainer,代碼行數:19,代碼來源:test_spatial_transformer_grid.py

示例11: check_forward_no_reduction

# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_cpu [as 別名]
def check_forward_no_reduction(self, x_data, t_data):
        x_val = chainer.Variable(x_data)
        t_val = chainer.Variable(t_data)
        loss = functions.sigmoid_cross_entropy(
            x_val, t_val, self.normalize, reduce='no')
        self.assertEqual(loss.data.shape, self.x.shape)
        self.assertEqual(loss.data.dtype, self.dtype)
        loss_value = cuda.to_cpu(loss.data)

        # Compute expected value
        if not getattr(self, 'ignore_all', False):
            for i in six.moves.range(self.x.shape[0]):
                for j in six.moves.range(self.x.shape[1]):
                    xd, td = self.x[i, j], self.t[i, j]
                    if td == -1:
                        loss_expect = 0
                    else:
                        loss_expect = -(
                            xd * (td - (xd >= 0)) -
                            math.log(1 + math.exp(-numpy.abs(xd))))
                    self.assertAlmostEqual(
                        loss_expect, loss_value[i, j], places=self.places) 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:test_sigmoid_cross_entropy.py

示例12: check_forward

# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_cpu [as 別名]
def check_forward(self, x_data, t_data):
        x = chainer.Variable(x_data)
        t = chainer.Variable(t_data)
        loss = functions.huber_loss(x, t, delta=1, reduce=self.reduce)
        self.assertEqual(loss.data.dtype, self.dtype)
        loss_value = cuda.to_cpu(loss.data)

        diff_data = cuda.to_cpu(x_data) - cuda.to_cpu(t_data)
        loss_expect = numpy.zeros(self.shape)
        mask = numpy.abs(diff_data) < 1
        loss_expect[mask] = 0.5 * diff_data[mask] ** 2
        loss_expect[~mask] = numpy.abs(diff_data[~mask]) - 0.5
        if self.reduce == 'sum_along_second_axis':
            loss_expect = numpy.sum(loss_expect, axis=1)
        testing.assert_allclose(
            loss_value, loss_expect, **self.forward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:18,代碼來源:test_huber_loss.py

示例13: check_forward

# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_cpu [as 別名]
def check_forward(self, a_data, p_data, n_data):
        a_val = chainer.Variable(a_data)
        p_val = chainer.Variable(p_data)
        n_val = chainer.Variable(n_data)
        loss = functions.triplet(a_val, p_val, n_val, self.margin, self.reduce)
        if self.reduce == 'mean':
            self.assertEqual(loss.data.shape, ())
        else:
            self.assertEqual(loss.data.shape, (self.batchsize,))
        self.assertEqual(loss.data.dtype, self.dtype)
        loss_value = cuda.to_cpu(loss.data)

        #
        # Compute expected value
        #
        loss_expect = numpy.empty((self.a.shape[0],), dtype=self.dtype)
        for i in six.moves.range(self.a.shape[0]):
            ad, pd, nd = self.a[i], self.p[i], self.n[i]
            dp = numpy.sum((ad - pd) ** 2)
            dn = numpy.sum((ad - nd) ** 2)
            loss_expect[i] = max((dp - dn + self.margin), 0)
        if self.reduce == 'mean':
            loss_expect = loss_expect.mean()
        numpy.testing.assert_allclose(
            loss_expect, loss_value, **self.check_forward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:27,代碼來源:test_triplet.py

示例14: _check

# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_cpu [as 別名]
def _check(self, backend_config):
        mask = self.mask if self.specify_mask else None
        x, mask = backend_config.get_array((self.x, mask))
        with chainer.using_config('train', self.train), backend_config:
            out, out_mask = functions.dropout(
                x, 0.5, mask=mask, return_mask=True)

        if self.train:
            assert isinstance(out_mask, type(out.array))
            if mask is None:
                assert out_mask.shape == out.array.shape
            else:
                assert out_mask is mask
        else:
            assert out_mask is None

        with chainer.using_config('train', self.train):
            out2 = functions.dropout(self.x, 0.5, mask=cuda.to_cpu(out_mask))
        testing.assert_allclose(out.array, out2.array) 
開發者ID:chainer,項目名稱:chainer,代碼行數:21,代碼來源:test_dropout.py

示例15: to_cpu

# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import to_cpu [as 別名]
def to_cpu(array):
    if isinstance(array, cp.ndarray):
        return cuda.to_cpu(array)
    return array 
開發者ID:musyoku,項目名稱:chainer-gqn,代碼行數:6,代碼來源:preprocessing.py


注:本文中的chainer.backends.cuda.to_cpu方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。