本文整理匯總了Python中chainer.backends.cuda.get_array_module方法的典型用法代碼示例。如果您正苦於以下問題:Python cuda.get_array_module方法的具體用法?Python cuda.get_array_module怎麽用?Python cuda.get_array_module使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.backends.cuda
的用法示例。
在下文中一共展示了cuda.get_array_module方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: generate_image
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import get_array_module [as 別名]
def generate_image(self, v, r):
xp = cuda.get_array_module(v)
batch_size = v.shape[0]
h_t_gen, c_t_gen, u_t, _, _ = self.generate_initial_state(
batch_size, xp)
v = cf.reshape(v, v.shape[:2] + (1, 1))
for t in range(self.num_layers):
generation_core = self.get_generation_core(t)
mean_z_p, ln_var_z_p = self.z_prior_distribution.compute_parameter(
h_t_gen)
z_t = cf.gaussian(mean_z_p, ln_var_z_p)
h_next_gen, c_next_gen, u_next = generation_core(
h_t_gen, c_t_gen, z_t, v, r, u_t)
u_t = u_next
h_t_gen = h_next_gen
c_t_gen = c_next_gen
mean_x = self.map_u_x(u_t)
return mean_x.data
示例2: generate_image_from_zero_z
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import get_array_module [as 別名]
def generate_image_from_zero_z(self, v, r):
xp = cuda.get_array_module(v)
batch_size = v.shape[0]
h_t_gen, c_t_gen, u_t, _, _ = self.generate_initial_state(
batch_size, xp)
v = cf.reshape(v, v.shape[:2] + (1, 1))
for t in range(self.num_layers):
generation_core = self.get_generation_core(t)
mean_z_p, _ = self.z_prior_distribution.compute_parameter(h_t_gen)
z_t = xp.zeros_like(mean_z_p.data)
h_next_gen, c_next_gen, u_next = generation_core(
h_t_gen, c_t_gen, z_t, v, r, u_t)
u_t = u_next
h_t_gen = h_next_gen
c_t_gen = c_next_gen
mean_x = self.map_u_x(u_t)
return mean_x.data
示例3: backward_log_softmax
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import get_array_module [as 別名]
def backward_log_softmax(self, x, y, gy):
if cuda.cudnn_enabled:
cudnn = cuda.cudnn
libcudnn = cuda.cuda.cudnn
_algorithm = libcudnn.CUDNN_SOFTMAX_LOG
_mode = libcudnn.CUDNN_SOFTMAX_MODE_CHANNEL
xp = cuda.get_array_module(x)
if xp is not numpy and chainer.should_use_cudnn('>=auto', 3000):
oz_dtype = 'd' if x.dtype == 'd' else 'f'
one = numpy.array(1, dtype=oz_dtype).ctypes
zero = numpy.array(0, dtype=oz_dtype).ctypes
handle = cudnn.get_handle()
gx = xp.empty(x.shape, dtype=x.dtype)
gx_cube = gx.reshape(gx.shape[:2] + (-1, 1))
desc = cudnn.create_tensor_descriptor(gx_cube)
libcudnn.softmaxBackward(
handle, _algorithm, _mode, one.data, desc.value,
y.data.ptr, desc.value, gy.data.ptr, zero.data,
desc.value, gx.data.ptr)
else:
gx = gy - xp.exp(y) * gy.sum(axis=1, keepdims=True)
return gx
示例4: _enumerate_shifted_anchor
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import get_array_module [as 別名]
def _enumerate_shifted_anchor(anchor_base, feat_stride, height, width):
# Enumerate all shifted anchors:
#
# add A anchors (1, A, 4) to
# cell K shifts (K, 1, 4) to get
# shift anchors (K, A, 4)
# reshape to (K*A, 4) shifted anchors
xp = cuda.get_array_module(anchor_base)
shift_y = xp.arange(0, height * feat_stride, feat_stride)
shift_x = xp.arange(0, width * feat_stride, feat_stride)
shift_x, shift_y = xp.meshgrid(shift_x, shift_y)
shift = xp.stack((shift_y.ravel(), shift_x.ravel(),
shift_y.ravel(), shift_x.ravel()), axis=1)
A = anchor_base.shape[0]
K = shift.shape[0]
anchor = anchor_base.reshape((1, A, 4)) + \
shift.reshape((1, K, 4)).transpose((1, 0, 2))
anchor = anchor.reshape((K * A, 4)).astype(np.float32)
return anchor
示例5: __call__
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import get_array_module [as 別名]
def __call__(self, **kwargs):
image = kwargs.pop('image', None)
words = kwargs.pop('words', None)
return_predictions = kwargs.pop('return_predictions', False)
with chainer.using_device(self.device):
rois, bboxes = self.localizer.predict(image)[:2]
predicted_words = self.recognizer.predict(rois).array
self.xp = cuda.get_array_module(bboxes)
batch_size, num_bboxes, num_channels, height, width = rois.shape
rois = self.xp.reshape(rois.array, (-1, num_channels, height, width))
bboxes = self.xp.reshape(bboxes.array, (-1, 2, height, width))
self.calc_word_accuracy(predicted_words, words)
if return_predictions:
return rois, bboxes, predicted_words
示例6: r2_score
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import get_array_module [as 別名]
def r2_score(self, pred, true, sample_weight=None,
multioutput='uniform_average', ignore_nan=False):
if self.sample_weight is not None:
raise NotImplementedError()
if self.multioutput not in ['uniform_average', 'raw_values']:
raise ValueError('invalid multioutput argument')
xp = cuda.get_array_module(pred)
diff = pred - true
dev = true - xp.mean(true, axis=0)
if self.ignore_nan:
diff[xp.isnan(diff)] = 0.
dev[xp.isnan(dev)] = 0.
SS_res = xp.asarray(xp.sum(diff ** 2, axis=0))
SS_tot = xp.asarray(xp.sum(dev ** 2, axis=0))
SS_tot_iszero = SS_tot == 0
SS_tot[SS_tot_iszero] = 1 # Assign dummy value to avoid zero-division
ret = xp.where(
SS_tot_iszero, 0.0, 1 - SS_res / SS_tot).astype(pred.dtype)
if self.multioutput == 'uniform_average':
return xp.asarray(ret.mean())
elif self.multioutput == 'raw_values':
return ret
示例7: forward
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import get_array_module [as 別名]
def forward(self, inputs):
xp = cuda.get_array_module(*inputs)
pred, true = inputs
diff = pred - true
dev = true - xp.mean(true, axis=0)
if self.ignore_nan:
diff[xp.isnan(diff)] = 0.
dev[xp.isnan(dev)] = 0.
SS_res = xp.asarray(
xp.sum(diff ** 2, axis=0))
SS_tot = xp.asarray(
xp.sum(dev ** 2, axis=0))
SS_tot_iszero = SS_tot == 0
SS_tot[SS_tot_iszero] = 1 # Assign dummy value to avoid zero-division
ret = xp.where(
SS_tot_iszero, 0.0, 1 - SS_res / SS_tot).astype(pred.dtype)
if self.multioutput == 'uniform_average':
return xp.asarray(ret.mean()),
elif self.multioutput == 'raw_values':
return ret,
示例8: update_core
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import get_array_module [as 別名]
def update_core(self):
image, labels = self.converter(self.get_iterator('main').next())
assert image.shape[0] == 1, "Batchsize of only 1 is allowed for now"
image = Variable(image)
if self.device >= 0:
image.to_gpu(self.device)
cl_output = self._optimizers['main'].target.classify(image)
xp = get_array_module(cl_output.data)
target = xp.asarray([[0]*(self.no_of_classes)]*cl_output.shape[0])
for i in range(labels.shape[0]):
gt_labels = np.unique(labels[i]).astype(np.int32)[2:] - 1 # Not considering -1 & 0
target[i][gt_labels] = 1
loss = F.sigmoid_cross_entropy(cl_output, target, normalize=True)
report({'Loss':loss}, self.get_optimizer('main').target)
self._optimizers['main'].target.cleargrads()
loss.backward()
self._optimizers['main'].update()
示例9: max_singular_value
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import get_array_module [as 別名]
def max_singular_value(W, u=None, Ip=1):
"""
Apply power iteration for the weight parameter
"""
xp = cuda.get_array_module(W.data)
if u is None:
u = xp.random.normal(size=(1, W.shape[0])).astype(xp.float32)
_u = u
for _ in range(Ip):
_v = _l2normalize(xp.dot(_u, W.data), eps=1e-12)
_u = _l2normalize(xp.dot(_v, W.data.transpose()), eps=1e-12)
sigma = sum.sum(linear.linear(_u, transpose.transpose(W)) * _v)
return sigma, _u, _v
示例10: sample_z_and_x_params_from_posterior
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import get_array_module [as 別名]
def sample_z_and_x_params_from_posterior(self, x, v, r):
batch_size = x.shape[0]
xp = cuda.get_array_module(x)
h_t_gen, c_t_gen, u_t, h_t_enc, c_t_enc = self.generate_initial_state(
batch_size, xp)
v = cf.reshape(v, v.shape + (1, 1))
z_t_params_array = []
for t in range(self.num_layers):
inference_core = self.get_inference_core(t)
generation_core = self.get_generation_core(t)
h_next_enc, c_next_enc = inference_core(h_t_gen, h_t_enc, c_t_enc,
x, v, r, u_t)
mean_z_q, ln_var_z_q = self.z_posterior_distribution.compute_parameter(
h_t_enc)
z_t = cf.gaussian(mean_z_q, ln_var_z_q)
mean_z_p, ln_var_z_p = self.z_prior_distribution.compute_parameter(
h_t_gen)
h_next_gen, c_next_gen, u_next = generation_core(
h_t_gen, c_t_gen, z_t, v, r, u_t)
z_t_params_array.append((mean_z_q, ln_var_z_q, mean_z_p,
ln_var_z_p))
u_t = u_next
h_t_gen = h_next_gen
c_t_gen = c_next_gen
h_t_enc = h_next_enc
c_t_enc = c_next_enc
mean_x = self.map_u_x(u_t)
return z_t_params_array, mean_x
示例11: preprocess_images
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import get_array_module [as 別名]
def preprocess_images(images, add_noise=False):
xp = cuda.get_array_module(images)
if add_noise:
images += xp.random.uniform(0, 1, size=images.shape).astype(xp.float32)
images = images / 256 - 0.5
return images
示例12: forward
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import get_array_module [as 別名]
def forward(self, inputs):
self.retain_inputs((0,))
x, = inputs
xp = cuda.get_array_module(x)
y = xp.arctanh(x)
return utils.force_array(y, dtype=x.dtype),
示例13: bbox_iou
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import get_array_module [as 別名]
def bbox_iou(bbox_a, bbox_b):
"""Calculate the Intersection of Unions (IoUs) between bounding boxes.
IoU is calculated as a ratio of area of the intersection
and area of the union.
This function accepts both :obj:`numpy.ndarray` and :obj:`cupy.ndarray` as
inputs. Please note that both :obj:`bbox_a` and :obj:`bbox_b` need to be
same type.
The output is same type as the type of the inputs.
Args:
bbox_a (array): An array whose shape is :math:`(N, 4)`.
:math:`N` is the number of bounding boxes.
The dtype should be :obj:`numpy.float32`.
bbox_b (array): An array similar to :obj:`bbox_a`,
whose shape is :math:`(K, 4)`.
The dtype should be :obj:`numpy.float32`.
Returns:
array:
An array whose shape is :math:`(N, K)`. \
An element at index :math:`(n, k)` contains IoUs between \
:math:`n` th bounding box in :obj:`bbox_a` and :math:`k` th bounding \
box in :obj:`bbox_b`.
"""
if bbox_a.shape[1] != 4 or bbox_b.shape[1] != 4:
raise IndexError
xp = cuda.get_array_module(bbox_a)
# top left
tl = xp.maximum(bbox_a[:, None, :2], bbox_b[:, :2])
# bottom right
br = xp.minimum(bbox_a[:, None, 2:], bbox_b[:, 2:])
area_i = xp.prod(br - tl, axis=2) * (tl < br).all(axis=2)
area_a = xp.prod(bbox_a[:, 2:] - bbox_a[:, :2], axis=1)
area_b = xp.prod(bbox_b[:, 2:] - bbox_b[:, :2], axis=1)
return area_i / (area_a[:, None] + area_b - area_i)
示例14: decode
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import get_array_module [as 別名]
def decode(self, segms, bboxes, labels, sizes):
"""Decodes back to masks.
Args:
segms (iterable of arrays): An iterable of arrays of
shape :math:`(R_n, n\_class, M, M)`.
bboxes (iterable of arrays): An iterable of arrays of
shape :math:`(R_n, 4)`.
labels (iterable of arrays): An iterable of arrays of
shape :math:`(R_n,)`.
sizes (list of tuples of two ints): A list of
:math:`(H_n, W_n)`, where :math:`H_n` and :math:`W_n`
are height and width of the :math:`n`-th image.
Returns:
list of arrays:
This list contains instance segmentation for each image
in the batch.
More precisely, this is a list of boolean arrays of shape
:math:`(R'_n, H_n, W_n)`, where :math:`R'_n` is the number of
bounding boxes in the :math:`n`-th image.
"""
xp = chainer.backends.cuda.get_array_module(*segms)
if xp != np:
raise ValueError(
'MaskHead.decode only supports numpy inputs for now.')
masks = []
for bbox, segm, label, size in zip(
bboxes, segms, labels, sizes):
if len(segm) > 0:
masks.append(
segm_to_mask(segm[np.arange(len(label)), label + 1],
bbox, size))
else:
masks.append(np.zeros((0,) + size, dtype=np.bool))
return masks
示例15: mask_head_loss_post
# 需要導入模塊: from chainer.backends import cuda [as 別名]
# 或者: from chainer.backends.cuda import get_array_module [as 別名]
def mask_head_loss_post(segms, mask_roi_indices, gt_segms, gt_mask_labels,
batchsize):
"""Loss function for Mask Head (post).
Args:
segms (array): An array whose shape is :math:`(R, n\_class, M, M)`,
where :math:`R` is the total number of RoIs in the given batch.
mask_roi_indices (array): A list of arrays returned by
:func:`mask_head_loss_pre`.
gt_segms (list of arrays): A list of arrays returned by
:func:`mask_head_loss_pre`.
gt_mask_labels (list of arrays): A list of arrays returned by
:func:`mask_head_loss_pre`.
batchsize (int): The size of batch.
Returns:
chainer.Variable:
Mask loss.
"""
xp = cuda.get_array_module(segms.array)
mask_roi_indices = xp.hstack(mask_roi_indices).astype(np.int32)
gt_segms = xp.vstack(gt_segms)
gt_mask_labels = xp.hstack(gt_mask_labels).astype(np.int32)
mask_loss = F.sigmoid_cross_entropy(
segms[np.arange(len(gt_mask_labels)), gt_mask_labels],
gt_segms.astype(np.int32))
return mask_loss