當前位置: 首頁>>代碼示例>>Python>>正文


Python chainer.Variable方法代碼示例

本文整理匯總了Python中chainer.Variable方法的典型用法代碼示例。如果您正苦於以下問題:Python chainer.Variable方法的具體用法?Python chainer.Variable怎麽用?Python chainer.Variable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer的用法示例。


在下文中一共展示了chainer.Variable方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: predict

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Variable [as 別名]
def predict(limit):
    _limit = limit if limit > 0 else 5

    td = TrainingData(LABEL_FILE, img_root=IMAGES_ROOT, mean_image_file=MEAN_IMAGE_FILE, image_property=IMAGE_PROP)
    label_def = LabelingMachine.read_label_def(LABEL_DEF_FILE)
    model = alex.Alex(len(label_def))
    serializers.load_npz(MODEL_FILE, model)

    i = 0
    for arr, im in td.generate():
        x = np.ndarray((1,) + arr.shape, arr.dtype)
        x[0] = arr
        x = chainer.Variable(np.asarray(x), volatile="on")
        y = model.predict(x)
        p = np.argmax(y.data)
        print("predict {0}, actual {1}".format(label_def[p], label_def[im.label]))
        im.image.show()
        i += 1
        if i >= _limit:
            break 
開發者ID:icoxfog417,項目名稱:mlimages,代碼行數:22,代碼來源:chainer_alex.py

示例2: test

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Variable [as 別名]
def test(self):
        a = chainer.Variable(np.random.rand(1).astype(np.float32))
        b = chainer.Variable(np.random.rand(1).astype(np.float32))

        # No old-style function
        y = 2 * a + b
        old_style_funcs = trpo._find_old_style_function([y])
        self.assertEqual(old_style_funcs, [])

        # One old-style function
        y = 2 * old_style_identity(a) + b
        old_style_funcs = trpo._find_old_style_function([y])
        self.assertEqual(len(old_style_funcs), 1)
        self.assertTrue(all(isinstance(f, OldStyleIdentity)
                            for f in old_style_funcs))

        # Three old-style functions
        y = (2 * old_style_identity(old_style_identity(a))
             + old_style_identity(b))
        old_style_funcs = trpo._find_old_style_function([y])
        self.assertEqual(len(old_style_funcs), 3)
        self.assertTrue(all(isinstance(f, OldStyleIdentity)
                            for f in old_style_funcs)) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:25,代碼來源:test_trpo.py

示例3: test_compute_advantage

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Variable [as 別名]
def test_compute_advantage(self):
        sample_actions = np.random.randint(self.action_size,
                                           size=self.batch_size)
        greedy_actions = self.q_values.argmax(axis=1)
        ret = self.qout.compute_advantage(sample_actions)
        self.assertIsInstance(ret, chainer.Variable)
        for b in range(self.batch_size):
            if sample_actions[b] == greedy_actions[b]:
                self.assertAlmostEqual(ret.array[b], 0)
            else:
                # An advantage to the optimal policy must be always negative
                self.assertLess(ret.array[b], 0)
                q = self.q_values[b, sample_actions[b]]
                v = self.q_values[b, greedy_actions[b]]
                adv = q - v
                self.assertAlmostEqual(ret.array[b], adv) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:18,代碼來源:test_action_value.py

示例4: test_max_unbounded

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Variable [as 別名]
def test_max_unbounded(self):
        n_batch = 7
        ndim_action = 3
        mu = np.random.randn(n_batch, ndim_action).astype(np.float32)
        mat = np.broadcast_to(
            np.eye(ndim_action, dtype=np.float32)[None],
            (n_batch, ndim_action, ndim_action))
        v = np.random.randn(n_batch).astype(np.float32)
        q_out = action_value.QuadraticActionValue(
            chainer.Variable(mu),
            chainer.Variable(mat),
            chainer.Variable(v))

        v_out = q_out.max
        self.assertIsInstance(v_out, chainer.Variable)
        v_out = v_out.array

        np.testing.assert_almost_equal(v_out, v) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:20,代碼來源:test_action_value.py

示例5: test_getitem

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Variable [as 別名]
def test_getitem(self):
        n_batch = 7
        ndim_action = 3
        mu = np.random.randn(n_batch, ndim_action).astype(np.float32)
        mat = np.broadcast_to(
            np.eye(ndim_action, dtype=np.float32)[None],
            (n_batch, ndim_action, ndim_action))
        v = np.random.randn(n_batch).astype(np.float32)
        min_action, max_action = -1, 1
        qout = action_value.QuadraticActionValue(
            chainer.Variable(mu),
            chainer.Variable(mat),
            chainer.Variable(v),
            min_action,
            max_action,
        )
        sliced = qout[:3]
        np.testing.assert_equal(sliced.mu.array, mu[:3])
        np.testing.assert_equal(sliced.mat.array, mat[:3])
        np.testing.assert_equal(sliced.v.array, v[:3])
        np.testing.assert_equal(sliced.min_action, min_action)
        np.testing.assert_equal(sliced.max_action, max_action) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:24,代碼來源:test_action_value.py

示例6: setUp

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Variable [as 別名]
def setUp(self):

        def evaluator(actions):
            # negative square norm of actions
            return -F.sum(actions ** 2, axis=1)

        self.evaluator = evaluator

        if self.has_maximizer:
            def maximizer():
                return chainer.Variable(np.zeros(
                    (self.batch_size, self.action_size), dtype=np.float32))
        else:
            maximizer = None
        self.maximizer = maximizer
        self.av = action_value.SingleActionValue(
            evaluator=evaluator, maximizer=maximizer) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:19,代碼來源:test_action_value.py

示例7: test_boltzmann

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Variable [as 別名]
def test_boltzmann(self):

        # T=1
        q_values = chainer.Variable(np.asarray([[-1, 1, 0]], dtype=np.float32))
        action_count = count_actions_selected_by_boltzmann(1, q_values)
        print('T=1', action_count)
        # Actions with larger values must be selected more often
        self.assertGreater(action_count[1], action_count[2])
        self.assertGreater(action_count[2], action_count[0])

        # T=0.5
        action_count_t05 = count_actions_selected_by_boltzmann(0.5, q_values)
        print('T=0.5', action_count_t05)
        # Actions with larger values must be selected more often
        self.assertGreater(action_count_t05[1], action_count_t05[2])
        self.assertGreater(action_count_t05[2], action_count_t05[0])

        # T=0.5 must be more greedy than T=1
        self.assertGreater(action_count_t05[1], action_count[1]) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:21,代碼來源:test_boltzmann.py

示例8: test_copy_param

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Variable [as 別名]
def test_copy_param(self):
        a = L.Linear(1, 5)
        b = L.Linear(1, 5)

        s = chainer.Variable(np.random.rand(1, 1).astype(np.float32))
        a_out = list(a(s).array.ravel())
        b_out = list(b(s).array.ravel())
        self.assertNotEqual(a_out, b_out)

        # Copy b's parameters to a
        copy_param.copy_param(a, b)

        a_out_new = list(a(s).array.ravel())
        b_out_new = list(b(s).array.ravel())
        self.assertEqual(a_out_new, b_out)
        self.assertEqual(b_out_new, b_out) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:18,代碼來源:test_copy_param.py

示例9: __call__

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Variable [as 別名]
def __call__(self, x, recurrent_state):
        """One-step batch forward computation.

        Args:
            x (chainer.Variable, ndarray, or tuple): One-step batched input.
            recurrent_state (object): Batched recurrent state.

        Returns:
            chainer.Variable, ndarray, or tuple: One-step batched output.
            object: New batched recurrent state.
        """
        assert isinstance(x, (chainer.Variable, self.xp.ndarray))
        return self.n_step_forward(
            split_one_step_batch_input(x),
            recurrent_state,
            output_mode='concat',
        ) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:19,代碼來源:stateless_recurrent.py

示例10: concatenate_sequences

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Variable [as 別名]
def concatenate_sequences(sequences):
    """Concatenate sequences.

    Args:
        sequences (list): List of sequences. The following two cases are
            supported:
                - (a) Each sequence is a Variable or ndarray.
                - (b) Each sequence is tuple of a Variable or ndarray.

    Returns:
        chainer.Variable, ndarray or tuple: Concatenated sequences.
    """
    if isinstance(sequences[0], tuple):
        tuple_size = len(sequences[0])
        return tuple(
            F.concat([seq[i] for seq in sequences], axis=0)
            for i in range(tuple_size))
        raise NotImplementedError
    else:
        return F.concat(sequences, axis=0) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:22,代碼來源:stateless_recurrent.py

示例11: __call__

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Variable [as 別名]
def __call__(self, x, update=True):
        """Normalize mean and variance of values based on emprical values.

        Args:
            x (ndarray or Variable): Input values
            update (bool): Flag to learn the input values

        Returns:
            ndarray or Variable: Normalized output values
        """

        xp = self.xp
        mean = xp.broadcast_to(self._mean, x.shape)
        std_inv = xp.broadcast_to(self._std_inverse, x.shape)

        if update:
            self.experience(x)

        normalized = (x - mean) * std_inv
        if self.clip_threshold is not None:
            normalized = xp.clip(
                normalized, -self.clip_threshold, self.clip_threshold)
        return normalized 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:25,代碼來源:empirical_normalization.py

示例12: bound_by_tanh

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Variable [as 別名]
def bound_by_tanh(x, low, high):
    """Bound a given value into [low, high] by tanh.

    Args:
        x (chainer.Variable): value to bound
        low (numpy.ndarray): lower bound
        high (numpy.ndarray): upper bound
    Returns: chainer.Variable
    """
    assert isinstance(x, chainer.Variable)
    assert low is not None
    assert high is not None
    xp = cuda.get_array_module(x.array)
    x_scale = (high - low) / 2
    x_scale = xp.expand_dims(xp.asarray(x_scale), axis=0)
    x_mean = (high + low) / 2
    x_mean = xp.expand_dims(xp.asarray(x_mean), axis=0)
    return F.tanh(x) * x_scale + x_mean 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:20,代碼來源:bound_by_tanh.py

示例13: __test

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Variable [as 別名]
def __test(self, model, batchsize):
        model.train = False
        test_accuracy = test_loss = 0
        for i in six.moves.range(0, self.test_data_num, batchsize):
            x = chainer.Variable(cuda.to_gpu(self.x_test[i:i + batchsize]), volatile=True)
            t = chainer.Variable(cuda.to_gpu(self.y_test[i:i + batchsize]), volatile=True)
            loss = model(x, t)
            test_loss += float(loss.data) * len(t.data)
            test_accuracy += float(model.accuracy.data) * len(t.data)
        model.train = True
        return test_accuracy, test_loss 
開發者ID:sg-nm,項目名稱:cgp-cnn,代碼行數:13,代碼來源:cnn_train.py

示例14: train

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Variable [as 別名]
def train(epoch=10, batch_size=32, gpu=False):
    if gpu:
        cuda.check_cuda_available()
    xp = cuda.cupy if gpu else np

    td = TrainingData(LABEL_FILE, img_root=IMAGES_ROOT, image_property=IMAGE_PROP)

    # make mean image
    if not os.path.isfile(MEAN_IMAGE_FILE):
        print("make mean image...")
        td.make_mean_image(MEAN_IMAGE_FILE)
    else:
        td.mean_image_file = MEAN_IMAGE_FILE

    # train model
    label_def = LabelingMachine.read_label_def(LABEL_DEF_FILE)
    model = alex.Alex(len(label_def))
    optimizer = optimizers.MomentumSGD(lr=0.01, momentum=0.9)
    optimizer.setup(model)
    epoch = epoch
    batch_size = batch_size

    print("Now our model is {0} classification task.".format(len(label_def)))
    print("begin training the model. epoch:{0} batch size:{1}.".format(epoch, batch_size))

    if gpu:
        model.to_gpu()

    for i in range(epoch):
        print("epoch {0}/{1}: (learning rate={2})".format(i + 1, epoch, optimizer.lr))
        td.shuffle(overwrite=True)

        for x_batch, y_batch in td.generate_batches(batch_size):
            x = chainer.Variable(xp.asarray(x_batch))
            t = chainer.Variable(xp.asarray(y_batch))

            optimizer.update(model, x, t)
            print("loss: {0}, accuracy: {1}".format(float(model.loss.data), float(model.accuracy.data)))

        serializers.save_npz(MODEL_FILE, model)
        optimizer.lr *= 0.97 
開發者ID:icoxfog417,項目名稱:mlimages,代碼行數:43,代碼來源:chainer_alex.py

示例15: __call__

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Variable [as 別名]
def __call__(self, x):
        """Applies the linear layer.
        Args:
            x (~chainer.Variable): Batch of input vectors.
        Returns:
            ~chainer.Variable: Output of the linear layer.
        """
        if self.W.data is None:
            self._initialize_params(x.size // x.shape[0])
        return linear.linear(x, self.W_bar, self.b) 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:12,代碼來源:sn_linear.py


注:本文中的chainer.Variable方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。