本文整理匯總了Python中chainer.Sequential方法的典型用法代碼示例。如果您正苦於以下問題:Python chainer.Sequential方法的具體用法?Python chainer.Sequential怎麽用?Python chainer.Sequential使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer
的用法示例。
在下文中一共展示了chainer.Sequential方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_manual
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Sequential [as 別名]
def test_manual(self):
link1 = L.Linear(2, 3)
link2 = L.Linear(2, 5)
link3 = chainer.Sequential(
L.Linear(2, 7),
F.tanh,
)
plink = Branched(link1, link2, link3)
x = np.zeros((self.batch_size, 2), dtype=np.float32)
pout = plink(x)
self.assertIsInstance(pout, tuple)
self.assertEqual(len(pout), 3)
out1 = link1(x)
out2 = link2(x)
out3 = link3(x)
np.testing.assert_allclose(pout[0].array, out1.array)
np.testing.assert_allclose(pout[1].array, out2.array)
np.testing.assert_allclose(pout[2].array, out3.array)
示例2: n_step_forward
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Sequential [as 別名]
def n_step_forward(self, x, recurrent_state):
"""Multi-step batch forward computation.
This method sequentially applies layers as chainer.Sequential does.
Args:
x (list): Input sequences. Each sequence should be a variable whose
first axis corresponds to time or a tuple of such variables.
recurrent_state (object): Batched recurrent state. If set to None,
it is initialized.
output_mode (str): If set to 'concat', the output value is
concatenated into a single large batch, which can be suitable
for loss computation. If set to 'split', the output value is
a list of output sequences.
Returns:
object: Output sequences. See the description of the `output_mode`
argument.
object: New batched recurrent state.
"""
raise NotImplementedError
示例3: test_copyparams
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Sequential [as 別名]
def test_copyparams(self):
l1 = links.Linear(None, 3)
l2 = links.Linear(3, 2)
l3 = links.Linear(2, 3)
s1 = chainer.Sequential(l1, l2)
s2 = chainer.Sequential(s1, l3)
l1.b.data.fill(0)
l2.W.data.fill(1)
l2.b.data.fill(2)
l3.W.data.fill(3)
l3.b.data.fill(4)
self.s2.copyparams(s2)
numpy.testing.assert_array_equal(self.l1.b.data, l1.b.data)
numpy.testing.assert_array_equal(self.l2.W.data, l2.W.data)
numpy.testing.assert_array_equal(self.l2.b.data, l2.b.data)
numpy.testing.assert_array_equal(self.l3.W.data, l3.W.data)
numpy.testing.assert_array_equal(self.l3.b.data, l3.b.data)
示例4: test_serialize
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Sequential [as 別名]
def test_serialize(self):
l1 = links.Linear(None, 1)
l2 = links.Linear(None, 3)
with l2.init_scope():
l2.x = variable.Parameter(0, 2)
s1 = chainer.Sequential(l1, l2)
mocks = {'0': mock.MagicMock(), '1': mock.MagicMock()}
serializer = mock.MagicMock()
serializer.__getitem__.side_effect = lambda k: mocks[k]
serializer.return_value = None
mocks['0'].return_value = None
mocks['1'].return_value = None
s1.serialize(serializer)
self.assertEqual(serializer.call_count, 0)
self.assertEqual(serializer.__getitem__.call_count, 2)
serializer.__getitem__.assert_any_call('0')
serializer.__getitem__.assert_any_call('1')
mocks['0'].assert_any_call('W', None)
mocks['0'].assert_any_call('b', l1.b.data)
mocks['1'].assert_any_call('W', None)
mocks['1'].assert_any_call('b', l2.b.data)
mocks['1'].assert_any_call('x', l2.x.data)
示例5: test_str
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Sequential [as 別名]
def test_str(self):
self.assertEqual(str(chainer.Sequential()), 'Sequential()')
expected = '''\
(0): Sequential(
(0): Linear(in_size=None, out_size=3, nobias=False),
(1): Linear(in_size=3, out_size=2, nobias=False),
),
(1): Linear(in_size=2, out_size=3, nobias=False),
(2): lambda x: functions.leaky_relu(x, slope=0.2),
'''
layers = [
self.s1,
self.l3,
lambda x: functions.leaky_relu(x, slope=0.2),
]
if six.PY3:
# In Python2, it fails because of different id of the function.
layer = functools.partial(functions.leaky_relu, slope=0.2)
layers.append(layer)
expected += ' (3): %s,\n' % layer
expected = 'Sequential(\n%s)' % expected
s = chainer.Sequential(*layers)
self.assertEqual(str(s), expected)
示例6: test_export_external_converters_overwrite
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Sequential [as 別名]
def test_export_external_converters_overwrite(tmpdir, check_model_expect):
path = str(tmpdir)
model = chainer.Sequential(chainer.functions.sigmoid)
x = input_generator.positive_increasing(2, 5)
def custom_converter(params):
return onnx_helper.make_node(
'Tanh', params.input_names, params.output_names),
addon_converters = {'Sigmoid': custom_converter}
export_testcase(model, x, path, external_converters=addon_converters)
tanh_outputs = chainer.functions.tanh(x).array
output_path = os.path.join(path, 'test_data_set_0', 'output_0.pb')
onnx_helper.write_tensor_pb(output_path, '', tanh_outputs) # overwrite
check_model_expect(path)
示例7: check_create_mnbn_model_sequential
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Sequential [as 別名]
def check_create_mnbn_model_sequential(self, use_gpu, use_chx):
size = 3
model = chainer.Sequential(
chainer.links.Convolution2D(
None, size, 1, 1, 1, nobias=True),
chainer.links.BatchNormalization(size),
chainer.functions.relu
)
mnbn_model = chainermn.links.create_mnbn_model(model,
self.communicator)
device = get_device(self.communicator.intra_rank if use_gpu else None,
use_chx)
mnbn_model.to_device(device)
with chainer.using_device(mnbn_model.device):
x = mnbn_model.xp.zeros((1, 1, 1, 1))
mnbn_model(x)
示例8: __reduce__
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Sequential [as 別名]
def __reduce__(self):
n_lambda = 0
for layer in self._layers:
if callable(layer) and hasattr(layer, '__name__') \
and layer.__name__ == '<lambda>':
n_lambda += 1
if n_lambda > 0:
raise ValueError(
'This Sequential object has at least one lambda function as '
'its component. Lambda function can not be pickled, so please '
'consider to use functools.partial instead of the lambda '
'function or use "dill", which is an external package that '
'enables pickling an object including lambda functions intead '
'of built-in pickle.')
return super(Sequential, self).__reduce__()
示例9: build_decoder
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Sequential [as 別名]
def build_decoder(vocab_size, N=6, model_size=512, ff_size=2048, num_heads=8, dropout_ratio=0.1):
attention = MultiHeadedAttention(num_heads, model_size, dropout_ratio=dropout_ratio)
feed_forward = PositionwiseFeedForward(model_size, ff_size, dropout_ratio=dropout_ratio)
positional_encoding = PositionalEncoding(model_size, dropout_ratio=dropout_ratio)
decoder_layer = DecoderLayer(
model_size,
copy.deepcopy(attention),
copy.deepcopy(attention),
feed_forward,
dropout_ratio=dropout_ratio
)
decoder = Decoder(decoder_layer, N)
embeddings = Embedding(model_size, vocab_size)
return chainer.Sequential(embeddings, positional_encoding), decoder
示例10: create_model
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Sequential [as 別名]
def create_model(trial):
# We optimize the numbers of layers and their units.
n_layers = trial.suggest_int("n_layers", 1, 3)
layers = []
for i in range(n_layers):
n_units = int(trial.suggest_loguniform("n_units_l{}".format(i), 32, 256))
layers.append(L.Linear(None, n_units))
layers.append(F.relu)
layers.append(L.Linear(None, 10))
return chainer.Sequential(*layers)
# FYI: Objective functions can take additional arguments
# (https://optuna.readthedocs.io/en/stable/faq.html#objective-func-additional-args).
示例11: create_model
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Sequential [as 別名]
def create_model(trial):
# We optimize the numbers of layers and their units.
n_layers = trial.suggest_int("n_layers", 1, 3)
layers = []
for i in range(n_layers):
n_units = trial.suggest_int("n_units_l{}".format(i), 4, 128, log=True)
layers.append(L.Linear(None, n_units))
layers.append(F.relu)
layers.append(L.Linear(None, 10))
return chainer.Sequential(*layers)
# FYI: Objective functions can take additional arguments
# (https://optuna.readthedocs.io/en/stable/faq.html#objective-func-additional-args).
示例12: test_chainer_pruning_extension
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Sequential [as 別名]
def test_chainer_pruning_extension() -> None:
def objective(trial: optuna.trial.Trial) -> float:
model = L.Classifier(chainer.Sequential(L.Linear(None, 2)))
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
train_iter = chainer.iterators.SerialIterator(FixedValueDataset(), 16)
updater = chainer.training.StandardUpdater(train_iter, optimizer)
trainer = chainer.training.Trainer(updater, (1, "epoch"))
trainer.extend(
optuna.integration.chainer.ChainerPruningExtension(trial, "main/loss", (1, "epoch"))
)
trainer.run(show_loop_exception_msg=False)
return 1.0
study = optuna.create_study(pruner=DeterministicPruner(True))
study.optimize(objective, n_trials=1)
assert study.trials[0].state == optuna.trial.TrialState.PRUNED
study = optuna.create_study(pruner=DeterministicPruner(False))
study.optimize(objective, n_trials=1)
assert study.trials[0].state == optuna.trial.TrialState.COMPLETE
assert study.trials[0].value == 1.0
示例13: test_sequential
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Sequential [as 別名]
def test_sequential(self):
model = chainer.Sequential(
chainer.links.Linear(3),
chainer.functions.relu,
chainer.links.Linear(4),
)
self.assertEqual(
names_of_links(model),
{'/0', '/1'}
)
self.assertIs(model._layers[1], chainer.functions.relu)
to_factorized_noisy(model)
self.assertEqual(
names_of_links(model),
{
'/0', '/0/mu', '/0/sigma',
'/1', '/1/mu', '/1/sigma',
})
self.assertIs(model._layers[1], chainer.functions.relu)
model(numpy.ones((2, 3), numpy.float32))
# assert new parameters are used
y = model(numpy.ones((2, 3), numpy.float32))
chainer.functions.sum(y).backward()
for p in model.params():
self.assertIsNotNone(p.grad)
示例14: _map_links
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Sequential [as 別名]
def _map_links(func, link):
if isinstance(link, chainer.Chain):
children_names = link._children.copy()
for name in children_names:
child = getattr(link, name)
new_child = func(child)
if new_child is child:
_map_links(func, child)
else:
delattr(link, name)
with link.init_scope():
setattr(link, name, new_child)
elif isinstance(link, chainer.ChainList):
children = link._children
for i in range(len(children)):
child = children[i]
new_child = func(child)
if new_child is child:
_map_links(func, child)
else:
# mimic ChainList.add_link
children[i] = new_child
children[i].name = str(i)
if isinstance(link, Sequence):
_replace_unique_item(link.layers, child, new_child)
# Check chainer.Sequential if it exists.
sequential_class = getattr(chainer, 'Sequential', ())
if isinstance(link, sequential_class):
_replace_unique_item(link._layers, child, new_child)
示例15: recurrent_children
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Sequential [as 別名]
def recurrent_children(self):
"""Return recurrent child links.
This overrides `StatelessRecurrentChainList.recurrent_children`
because `Sequential`'s evaluation order can be different from the
order of links in `Sequential.children()`.
See https://github.com/chainer/chainer/issues/6053
Returns:
tuple: Tuple of `chainer.Link`s that are recurrent.
"""
return tuple(child for child in self._layers
if is_recurrent_link(child))