本文整理匯總了Python中chainer.Parameter方法的典型用法代碼示例。如果您正苦於以下問題:Python chainer.Parameter方法的具體用法?Python chainer.Parameter怎麽用?Python chainer.Parameter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer
的用法示例。
在下文中一共展示了chainer.Parameter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Parameter [as 別名]
def __init__(self, ch=512, ch_in=512, w_ch=512, upsample=True, enable_blur=False):
super().__init__()
self.upsample = upsample
self.ch = ch
self.ch_in = ch_in
self.w_ch = w_ch
with self.init_scope():
if not upsample:
self.W = chainer.Parameter(shape=(ch_in, 4, 4))
self.W.data[:] = 1 # w_data_tmp
self.b0 = L.Bias(axis=1, shape=(ch,))
self.b1 = L.Bias(axis=1, shape=(ch,))
self.n0 = NoiseBlock(ch)
self.n1 = NoiseBlock(ch)
self.s0 = StyleBlock(w_ch, ch)
self.s1 = StyleBlock(w_ch, ch)
self.c0 = EqualizedConv2d(ch_in, ch, 3, 1, 1, nobias=True)
self.c1 = EqualizedConv2d(ch, ch, 3, 1, 1, nobias=True)
self.blur_k = None
self.enable_blur = enable_blur
示例2: __init__
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Parameter [as 別名]
def __init__(self, axis=1, W_shape=None, bias_term=False, bias_shape=None, initialW=None, initial_bias=None):
super(Scale, self).__init__()
self.axis = axis
with self.init_scope():
# Add W parameter and/or bias term.
if W_shape is not None:
if initialW is None:
initialW = 1
W_initializer = initializers._get_initializer(initialW)
self.W = variable.Parameter(W_initializer, W_shape)
if bias_term:
self.bias = Bias(axis, W_shape, initial_bias)
else:
if bias_term:
if bias_shape is None:
raise ValueError(
'bias_shape should be given if W is not '
'learnt parameter and bias_term is True.')
self.bias = Bias(axis, W_shape, initial_bias)
示例3: convert_parameter
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Parameter [as 別名]
def convert_parameter(parameter, name):
if isinstance(parameter, chainer.Parameter):
array = parameter.array
elif isinstance(parameter, chainer.Variable):
array = parameter.array
elif isinstance(parameter, np.ndarray):
array = parameter
else:
raise ValueError(
'The type of parameter is unknown. It should be either Parameter '
'or Variable or ndarray, but the type was {}.'.format(
type(parameter)))
if array.shape == ():
array = array[None]
# print('initialize', name, array)
return tensor_from_array(array, name)
# 入力xから次元を決める
# モデルにxを流して最初の重みを決める
示例4: convert_parameter
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Parameter [as 別名]
def convert_parameter(parameter, name):
if isinstance(parameter, chainer.Parameter):
array = parameter.array
elif isinstance(parameter, chainer.Variable):
array = parameter.array
elif isinstance(parameter, np.ndarray):
array = parameter
else:
raise ValueError(
'The type of parameter is unknown. It should be either Parameter '
'or Variable or ndarray, but the type was {}.'.format(
type(parameter)))
if array.shape == ():
array = array[None]
# print('initialize', name, array)
return onnx.numpy_helper.from_array(array, name)
# 入力xから次元を決める
# モデルにxを流して最初の重みを決める
示例5: set_name
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Parameter [as 別名]
def set_name(self, variable, name, pinned=False):
"""Set ONNX node name
Arguments:
variable (var): target variable
name (str): name to be exported as ONNX node name
pinned (bool): if ``True``, the name will not be overwritten in
subsequence process.
"""
str_id = id(variable)
assert str_id not in self.name_list or not self.name_list[str_id][1]
self.name_list[str_id] = (name, pinned)
if isinstance(variable, (chainer.Variable, chainer.Parameter)):
array_id = id(variable.array)
self.name_list[array_id] = (name, pinned)
示例6: setUp
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Parameter [as 別名]
def setUp(self):
x_shape_0 = 2
x_shape_1 = numpy.int64(3)
self.link = chainer.Link(x=((x_shape_0, x_shape_1), 'd'),
u=(None, 'd'))
with self.link.init_scope():
self.link.y = chainer.Parameter(shape=(2,))
self.link.v = chainer.Parameter()
self.p = numpy.array([1, 2, 3], dtype='f')
self.link.add_persistent('p', self.p)
self.link.name = 'a'
self.link.x.update_rule = chainer.UpdateRule()
self.link.x.update_rule.enabled = False
self.link.u.update_rule = chainer.UpdateRule()
if cuda.available:
self.current_device_id = cuda.cupy.cuda.get_device_id()
示例7: test_serialize
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Parameter [as 別名]
def test_serialize(self, backend_config):
call_record = []
def serializer(key, value):
call_record.append((key, value))
return value
l = chainer.Link()
with l.init_scope():
l.x = chainer.Parameter() # uninitialized
l.to_device(backend_config.device)
l.serialize(serializer)
# Link is kept uninitialized
self.assertIsNone(l.x.array)
# Check inputs to the serializer
self.assertEqual(len(call_record), 1)
self.assertEqual(call_record[0][0], 'x')
self.assertIs(call_record[0][1], None)
示例8: test_deserialize
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Parameter [as 別名]
def test_deserialize(self, backend_config):
# Deserializes uninitialized parameters into uninitialied ones.
call_record = []
def serializer(key, value):
call_record.append((key, value))
return None # to be uninitialized
l = chainer.Link()
with l.init_scope():
l.x = chainer.Parameter() # uninitialized
l.to_device(backend_config.device)
l.serialize(serializer)
# Link is kept uninitialized
self.assertIsNone(l.x.array)
# Check inputs to the serializer
self.assertEqual(len(call_record), 1)
self.assertEqual(call_record[0][0], 'x')
self.assertIs(call_record[0][1], None)
示例9: test_copyparams
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Parameter [as 別名]
def test_copyparams(self):
l1 = chainer.Link()
with l1.init_scope():
l1.x = chainer.Parameter(shape=(2, 3))
l1.y = chainer.Parameter()
l2 = chainer.Link()
with l2.init_scope():
l2.x = chainer.Parameter(shape=2)
l3 = chainer.Link()
with l3.init_scope():
l3.x = chainer.Parameter(shape=3)
c1 = chainer.ChainList(l1, l2)
c2 = chainer.ChainList(c1, l3)
l1.x.data.fill(0)
l2.x.data.fill(1)
l3.x.data.fill(2)
self.c2.copyparams(c2)
numpy.testing.assert_array_equal(self.l1.x.data, l1.x.data)
numpy.testing.assert_array_equal(self.l2.x.data, l2.x.data)
numpy.testing.assert_array_equal(self.l3.x.data, l3.x.data)
示例10: test_copydata_to_uninitialized_parameter
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Parameter [as 別名]
def test_copydata_to_uninitialized_parameter(
self, src_backend_config, dst_backend_config):
shape = self.shape
dtype = np.float32
src_arr_numpy = np.asarray(np.random.randn(*shape), dtype)
src_arr = src_backend_config.get_array(src_arr_numpy.copy())
dst_var = chainer.Parameter()
dst_var.to_device(dst_backend_config.device)
src_var = chainer.Parameter(src_arr)
src_arr_prev = src_var.array
dst_var.copydata(src_var)
assert src_var.array is src_arr_prev
assert src_var.device == src_backend_config.device
assert dst_var.device == dst_backend_config.device
np.testing.assert_array_equal(
_numpy_device.send(dst_var.data), src_arr_numpy)
示例11: _initialize_params
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Parameter [as 別名]
def _initialize_params(self, in_size):
super(SNLinear, self)._initialize_params(in_size)
if self.use_gamma:
_, s, _ = np.linalg.svd(self.W.data)
with self.init_scope():
self.gamma = chainer.Parameter(s[0], (1, 1))
示例12: _initialize_params
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Parameter [as 別名]
def _initialize_params(self, in_size):
super(SNConvolution2D, self)._initialize_params(in_size)
if self.use_gamma:
W_mat = self.W.data.reshape(self.W.shape[0], -1)
_, s, _ = np.linalg.svd(W_mat)
with self.init_scope():
self.gamma = chainer.Parameter(s[0], (1, 1, 1, 1))
示例13: __init__
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Parameter [as 別名]
def __init__(self):
super().__init__()
with self.init_scope():
self.bias = chainer.Parameter(0, shape=1)
示例14: create_simple_link
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Parameter [as 別名]
def create_simple_link():
link = chainer.Link()
with link.init_scope():
link.param = chainer.Parameter(np.zeros(1))
return link
示例15: test_namedpersistent
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Parameter [as 別名]
def test_namedpersistent():
# This test case is adopted from
# https://github.com/chainer/chainer/pull/6788
l1 = chainer.Link()
with l1.init_scope():
l1.x = chainer.Parameter(shape=(2, 3))
l2 = chainer.Link()
with l2.init_scope():
l2.x = chainer.Parameter(shape=2)
l2.add_persistent(
'l2_a', numpy.array([1, 2, 3], dtype=numpy.float32))
l3 = chainer.Link()
with l3.init_scope():
l3.x = chainer.Parameter()
l3.add_persistent(
'l3_a', numpy.array([1, 2, 3], dtype=numpy.float32))
c1 = chainer.Chain()
with c1.init_scope():
c1.l1 = l1
c1.add_link('l2', l2)
c1.add_persistent(
'c1_a', numpy.array([1, 2, 3], dtype=numpy.float32))
c2 = chainer.Chain()
with c2.init_scope():
c2.c1 = c1
c2.l3 = l3
c2.add_persistent(
'c2_a', numpy.array([1, 2, 3], dtype=numpy.float32))
namedpersistent = list(chainerrl.misc.namedpersistent(c2))
assert (
[(name, id(p)) for name, p in namedpersistent] ==
[('/c2_a', id(c2.c2_a)), ('/c1/c1_a', id(c2.c1.c1_a)),
('/c1/l2/l2_a', id(c2.c1.l2.l2_a)), ('/l3/l3_a', id(c2.l3.l3_a))])