當前位置: 首頁>>代碼示例>>Python>>正文


Python chainer.Function方法代碼示例

本文整理匯總了Python中chainer.Function方法的典型用法代碼示例。如果您正苦於以下問題:Python chainer.Function方法的具體用法?Python chainer.Function怎麽用?Python chainer.Function使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer的用法示例。


在下文中一共展示了chainer.Function方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: check_type_mismatch

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Function [as 別名]
def check_type_mismatch(self, x_data, retain):
        xp = backend.get_array_module(x_data)

        class DummyFunction(chainer.Function):
            label = 'dummy_function'

            def forward(self, inputs):
                if not retain:
                    self.retain_inputs(())
                return xp.array(1, np.float32),

            def backward(self, inputs, grads):
                return [1]

        x = chainer.Variable(x_data)
        y = DummyFunction()(x)
        with six.assertRaisesRegex(self, TypeError, 'dummy_function'):
            y.backward() 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:test_variable.py

示例2: check_dtype_mismatch

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Function [as 別名]
def check_dtype_mismatch(self, x_data, retain):
        xp = backend.get_array_module(x_data)

        class DummyFunction(chainer.Function):
            label = 'dummy_function'

            def forward(self, inputs):
                if not retain:
                    self.retain_inputs(())
                return xp.array(1, np.float32),

            def backward(self, inputs, grads):
                return xp.array([1], np.int32),

        x = chainer.Variable(x_data)
        y = DummyFunction()(x)
        with six.assertRaisesRegex(self, TypeError, 'dummy_function'):
            y.backward() 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:test_variable.py

示例3: check_traceback

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Function [as 別名]
def check_traceback(self, x_data):
        xp = backend.get_array_module(x_data)

        class DummyFunction(chainer.Function):
            label = 'dummy_function'

            def forward(self, inputs):
                return xp.array(1, np.float32),

            def backward(self, inputs, grads):
                return xp.array([1, 2], np.float32),

        x = chainer.Variable(x_data)
        line = inspect.currentframe().f_lineno + 1
        y = DummyFunction()(x)  # `line` is THIS line
        try:
            y.backward()
            self.fail()
        except ValueError as e:
            assert 'Stacktrace' in str(e)
            assert 'line %d' % line in str(e) 
開發者ID:chainer,項目名稱:chainer,代碼行數:23,代碼來源:test_variable.py

示例4: check_positive

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Function [as 別名]
def check_positive(self, xp, func_name, input, eps, nout):
        # Should be non-differentiable
        func = getattr(self, '_func_{}'.format(func_name))
        grad_outputs = [
            xp.random.uniform(-1, 1, input.shape).astype(input.dtype)
            for _ in range(nout)]

        def f():
            return func(input) * nout

        try:
            gradient_check.numerical_grad(
                f, (input,), grad_outputs, eps=eps,
                detect_nondifferentiable=True)
        except gradient_check.NondifferentiableError:
            pass
        else:
            raise AssertionError(
                'Function `{}` is expected to be non-differentiable, '
                'but determined to be differentiable.\n\n'
                'eps: {}\n'
                'input: {}\n'
                'xp: {}\n'
                ''.format(
                    func_name, eps, input, xp.__name__)) 
開發者ID:chainer,項目名稱:chainer,代碼行數:27,代碼來源:test_gradient_check.py

示例5: check_negative

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Function [as 別名]
def check_negative(self, xp, func_name, input, eps, nout):
        # Should be differentiable
        func = getattr(self, '_func_{}'.format(func_name))
        grad_outputs = [
            xp.random.uniform(-1, 1, input.shape).astype(input.dtype)
            for _ in range(nout)]

        def f():
            return func(input) * nout

        try:
            gradient_check.numerical_grad(
                f, (input,), grad_outputs, eps=eps,
                detect_nondifferentiable=True)
        except gradient_check.NondifferentiableError as e:
            raise AssertionError(
                'Function `{}` is expected to be differentiable, '
                'but determined to be non-differentiable.\n\n'
                'eps: {}\n'
                'input: {}\n'
                'xp: {}\n\n'
                '{}: {}'
                .format(
                    func_name, eps, input, xp.__name__,
                    e.__class__.__name__, e)) 
開發者ID:chainer,項目名稱:chainer,代碼行數:27,代碼來源:test_gradient_check.py

示例6: forward

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Function [as 別名]
def forward(self, inputs):
        """Applies forward propagation to input arrays.

        It delegates the procedure to :meth:`forward_cpu` or
        :meth:`forward_gpu` by default. Which it selects is determined by the
        type of input arrays.
        Implementations of :class:`Function` must implement either CPU/GPU
        methods or this method.

        Args:
            inputs: Tuple of input array(s).

        Returns:
            Tuple of output array(s).

        .. warning::

            Implementations of :class:`Function` must take care that the
            return value must be a tuple even if it returns only one array.

        """
        if any(isinstance(x, cuda.ndarray) for x in inputs):
            return self.forward_gpu(inputs)
        else:
            return self.forward_cpu(inputs) 
開發者ID:chainer,項目名稱:chainer,代碼行數:27,代碼來源:function.py

示例7: forward_cpu

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Function [as 別名]
def forward_cpu(self, inputs):
        """Applies forward propagation to input arrays on CPU.

        Args:
            inputs: Tuple of :class:`numpy.ndarray` object(s).

        Returns:
            tuple: Tuple of :class:`numpy.ndarray` object(s).

        .. warning::

            Implementations of :class:`Function` must take care that the
            return value must be a tuple even if it returns only one array.

        """
        raise NotImplementedError() 
開發者ID:chainer,項目名稱:chainer,代碼行數:18,代碼來源:function.py

示例8: backward_cpu

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Function [as 別名]
def backward_cpu(self, inputs, grad_outputs):
        """Applies backprop to output gradient arrays on CPU.

        Args:
            inputs: Tuple of input :class:`numpy.ndarray` object(s).
            grad_outputs: Tuple of output gradient :class:`numpy.ndarray`
                object(s).

        Returns:
            tuple: Tuple of input gradient :class:`numpy.ndarray` object(s).
            Some or all of them can be ``None``, if the function is not
            differentiable on corresponding inputs.

        .. warning::

            Implementations of :class:`Function` must take care that the
            return value must be a tuple even if it returns only one array.

        """
        return tuple(None for _ in inputs) 
開發者ID:chainer,項目名稱:chainer,代碼行數:22,代碼來源:function.py

示例9: backward_gpu

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Function [as 別名]
def backward_gpu(self, inputs, grad_outputs):
        """Applies backprop to output gradient arrays on GPU.

        Args:
            inputs: Tuple of input :class:`cupy.ndarray`
                object(s).
            grad_outputs: Tuple of output gradient
                :class:`cupy.ndarray` object(s).

        Returns:
            tuple: Tuple of input gradient :class:`cupy.ndarray`
            object(s). Some or all of them can be ``None``, if the function is
            not differentiable on corresponding inputs.

        .. warning::

            Implementations of :class:`Function` must take care that the
            return value must be a tuple even if it returns only one array.

        """
        return tuple(None for _ in inputs) 
開發者ID:chainer,項目名稱:chainer,代碼行數:23,代碼來源:function.py

示例10: check_layout_forward

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Function [as 別名]
def check_layout_forward(self, inputs):
        if self.is_elementwise:
            if not all([x.layout == inputs[0].layout for x in inputs]):
                raise RuntimeError(
                    'Inputs with mixed memory layouts were given to '
                    'an elementwise function.\n'
                    'Function: {}\n'
                    'Input layouts: {}\n'.format(
                        self.label,
                        ', '.join(str(x.layout) for x in inputs),
                    ))
        else:
            if not all([x.layout is None for x in inputs]):
                raise RuntimeError(
                    'Inputs with non-standard layouts were given to '
                    'a function without explicit `check_layout_forward` '
                    'implementation.\n'
                    'Function: {}\n'
                    'Input layouts: {}\n'.format(
                        self.label,
                        ', '.join(str(x.layout) for x in inputs),
                    )) 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:function_node.py

示例11: retain_inputs

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Function [as 別名]
def retain_inputs(self, indexes):
        """Lets specified input variable nodes keep data arrays.

        By calling this method from :meth:`forward`, the function node can
        specify which inputs are required for backprop. The input variables
        with retained arrays can then be obtained by calling
        :meth:`get_retained_inputs` from inside :meth:`backward`.

        Unlike :class:`~chainer.Function`, the function node **DOES NOT** keep
        input
        arrays by default. If you want to keep some or all input arrays, do not
        forget to call this method.

        Note that **this method must not be called from the outside of**
        :meth:`forward`.

        Args:
            indexes (iterable of int): Indexes of input variables that the
                function will require for backprop.

        """
        self._input_indexes_to_retain = indexes 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:function_node.py

示例12: add_hook

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Function [as 別名]
def add_hook(self, hook, name=None):
        """Registers a function hook.

        Args:
            hook (~chainer.FunctionHook): Function hook to be
                registered.
            name (str): Name of the function hook. The name must be unique
                among function hooks registered to this function. If ``None``,
                the default name of the function hook is used.

        """
        if not isinstance(hook, function_hook.FunctionHook):
            raise TypeError('Hook must be of type FunctionHook')
        if name is None:
            name = hook.name
        hooks = self.local_function_hooks
        if name in hooks:
            raise KeyError('Hook %s already exists' % name)
        hooks[name] = hook
        hook.added(self) 
開發者ID:chainer,項目名稱:chainer,代碼行數:22,代碼來源:function_node.py

示例13: creator

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Function [as 別名]
def creator(self):
        """Function implementation that created this variable.

        When this variable has been created by an old-style function (i.e., it
        is implemented as a subclass of :class:`Function`), this property
        returns that :class:`Function` object.

        When this variable has been created by a new-style function (i.e., it
        is implemented as a subclass of :class:`FunctionNode` class), this
        property returns that node object.

        """
        if self._has_chainerx_array:
            raise RuntimeError(
                'A variable of ChainerX does not provide a creator.')
        return self._node.creator 
開發者ID:chainer,項目名稱:chainer,代碼行數:18,代碼來源:variable.py

示例14: _find_old_style_function

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Function [as 別名]
def _find_old_style_function(outputs):
    """Find old-style functions in the computational graph."""
    found = []
    for v in outputs:
        assert isinstance(v, (chainer.Variable, chainer.variable.VariableNode))
        if v.creator is None:
            continue
        if isinstance(v.creator, chainer.Function):
            found.append(v.creator)
        else:
            assert isinstance(v.creator, chainer.FunctionNode)
        found.extend(_find_old_style_function(v.creator.inputs))
    return found 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:15,代碼來源:trpo.py

示例15: setUp

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Function [as 別名]
def setUp(self):
        y_shape = self.y_shape
        x_shape = self.x_shape
        y1 = make_array(1, y_shape, numpy.float32)
        y2 = make_array(2, y_shape, numpy.float32)
        gx1 = make_array(1, x_shape, numpy.float32)
        gx2 = None
        gy1 = make_array(1, y_shape, numpy.float32)
        gy2 = make_array(1, y_shape, numpy.float32)

        f = chainer.Function()
        f.check_type_forward = mock.MagicMock()
        f.forward_cpu = mock.MagicMock(return_value=(y1, y2))
        f.forward_gpu = mock.MagicMock()
        f.backward_cpu = mock.MagicMock(return_value=(gx1, gx2))
        f.backward_gpu = mock.MagicMock()
        self.f = f

        self.x1 = make_array(0, x_shape, numpy.float32)
        self.x2 = make_array(0, x_shape, numpy.int32)
        self.y1 = y1
        self.y2 = y2
        self.gx1 = gx1
        self.gx2 = gx2
        self.gy1 = gy1
        self.gy2 = gy2 
開發者ID:chainer,項目名稱:chainer,代碼行數:28,代碼來源:test_function.py


注:本文中的chainer.Function方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。