當前位置: 首頁>>代碼示例>>Python>>正文


Python chainer.ChainList方法代碼示例

本文整理匯總了Python中chainer.ChainList方法的典型用法代碼示例。如果您正苦於以下問題:Python chainer.ChainList方法的具體用法?Python chainer.ChainList怎麽用?Python chainer.ChainList使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer的用法示例。


在下文中一共展示了chainer.ChainList方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_chainlist

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import ChainList [as 別名]
def test_chainlist(self):
        ch = chainer.ChainList(
            chainer.links.Linear(3, 4),
            chainer.links.Linear(5),
            chainer.links.PReLU(),
        )
        self.assertEqual(
            names_of_links(ch),
            {'/0', '/1', '/2'})

        to_factorized_noisy(ch)
        self.assertEqual(
            names_of_links(ch),
            {
                '/0', '/0/mu', '/0/sigma',
                '/1', '/1/mu', '/1/sigma', '/2'}) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:18,代碼來源:test_noisy_chain.py

示例2: __init__

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import ChainList [as 別名]
def __init__(self, n_actions, n_input_channels=4,
                 activation=F.relu, bias=0.1):
        self.n_actions = n_actions
        self.n_input_channels = n_input_channels
        self.activation = activation

        super().__init__()
        with self.init_scope():
            self.conv_layers = chainer.ChainList(
                L.Convolution2D(n_input_channels, 32, 8, stride=4,
                                initial_bias=bias),
                L.Convolution2D(32, 64, 4, stride=2, initial_bias=bias),
                L.Convolution2D(64, 64, 3, stride=1, initial_bias=bias))

            self.a_stream = MLP(3136, n_actions, [512])
            self.v_stream = MLP(3136, 1, [512]) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:18,代碼來源:dueling_dqn.py

示例3: __init__

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import ChainList [as 別名]
def __init__(self, ch=512):
        super().__init__()
        self.ch = ch
        with self.init_scope():
            self.l = chainer.ChainList(
                EqualizedLinear(ch, ch),
                LinkLeakyRelu(),
                EqualizedLinear(ch, ch),
                LinkLeakyRelu(),
                EqualizedLinear(ch, ch),
                LinkLeakyRelu(),
                EqualizedLinear(ch, ch),
                LinkLeakyRelu(),
                EqualizedLinear(ch, ch),
                LinkLeakyRelu(),
                EqualizedLinear(ch, ch),
                LinkLeakyRelu(),
                EqualizedLinear(ch, ch),
                LinkLeakyRelu(),
                EqualizedLinear(ch, ch),
                LinkLeakyRelu(),
            )
            self.ln = len(self.l) 
開發者ID:pfnet-research,項目名稱:chainer-stylegan,代碼行數:25,代碼來源:net.py

示例4: __init__

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import ChainList [as 別名]
def __init__(self, base, n_base_output, scales):
        super(FPN, self).__init__()
        with self.init_scope():
            self.base = base
            self.inner = chainer.ChainList()
            self.outer = chainer.ChainList()

        init = {'initialW': initializers.GlorotNormal()}
        for _ in range(n_base_output):
            self.inner.append(L.Convolution2D(256, 1, **init))
            self.outer.append(L.Convolution2D(256, 3, pad=1, **init))

        self.scales = scales
        # hacks
        self.n_base_output = n_base_output
        self.n_base_output_minus1 = n_base_output - 1
        self.scales_minus_n_base_output = len(scales) - n_base_output 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:19,代碼來源:fpn.py

示例5: setUp

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import ChainList [as 別名]
def setUp(self):
        self.l1 = chainer.Link()
        with self.l1.init_scope():
            self.l1.x = chainer.Parameter(shape=(2, 3))
            self.l1.y = chainer.Parameter()
        self.l2 = chainer.Link()
        with self.l2.init_scope():
            self.l2.x = chainer.Parameter(shape=2)
        self.l3 = chainer.Link()
        with self.l3.init_scope():
            self.l3.x = chainer.Parameter(shape=3)
        self.l4 = chainer.Link()
        self.l5 = chainer.Link()
        self.l6 = chainer.Link()
        self.c1 = chainer.ChainList(self.l1)
        self.c1.add_link(self.l2)
        self.c2 = chainer.ChainList(self.c1)
        self.c2.append(self.l3)
        self.c3 = chainer.ChainList(self.l4) 
開發者ID:chainer,項目名稱:chainer,代碼行數:21,代碼來源:test_link.py

示例6: test_copyparams

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import ChainList [as 別名]
def test_copyparams(self):
        l1 = chainer.Link()
        with l1.init_scope():
            l1.x = chainer.Parameter(shape=(2, 3))
            l1.y = chainer.Parameter()
        l2 = chainer.Link()
        with l2.init_scope():
            l2.x = chainer.Parameter(shape=2)
        l3 = chainer.Link()
        with l3.init_scope():
            l3.x = chainer.Parameter(shape=3)
        c1 = chainer.ChainList(l1, l2)
        c2 = chainer.ChainList(c1, l3)
        l1.x.data.fill(0)
        l2.x.data.fill(1)
        l3.x.data.fill(2)

        self.c2.copyparams(c2)

        numpy.testing.assert_array_equal(self.l1.x.data, l1.x.data)
        numpy.testing.assert_array_equal(self.l2.x.data, l2.x.data)
        numpy.testing.assert_array_equal(self.l3.x.data, l3.x.data) 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:test_link.py

示例7: test_serialize

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import ChainList [as 別名]
def test_serialize(self):
        l1 = chainer.Link()
        with l1.init_scope():
            l1.y = chainer.Parameter(shape=(1, 1))

        l2 = chainer.Link()
        with l2.init_scope():
            l2.x = chainer.Parameter(0, 2)
        c1 = chainer.ChainList(l1, l2)
        mocks = {'0': mock.MagicMock(), '1': mock.MagicMock()}
        serializer = mock.MagicMock()
        serializer.__getitem__.side_effect = lambda k: mocks[k]
        serializer.return_value = None
        mocks['0'].return_value = None
        mocks['1'].return_value = None
        c1.serialize(serializer)

        self.assertEqual(serializer.call_count, 0)
        self.assertEqual(serializer.__getitem__.call_count, 2)
        serializer.__getitem__.assert_any_call('0')
        serializer.__getitem__.assert_any_call('1')

        mocks['0'].assert_called_with('y', l1.y.data)
        mocks['1'].assert_called_with('x', l2.x.data) 
開發者ID:chainer,項目名稱:chainer,代碼行數:26,代碼來源:test_link.py

示例8: __init__

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import ChainList [as 別名]
def __init__(self, n_in_node, edge_types, msg_hid, msg_out, n_hid, do_prob=0., skip_first=False):
        super(MLPDecoder, self).__init__()

        w = chainer.initializers.LeCunUniform(scale=(1. / np.sqrt(3)))
        b = self._bias_initializer

        with self.init_scope():
            self.msg_fc1 = chainer.ChainList(
                *[L.Linear(2 * n_in_node, msg_hid) for _ in range(edge_types)])
            self.msg_fc2 = chainer.ChainList(
                *[L.Linear(msg_hid, msg_out) for _ in range(edge_types)])
            self.out_fc1 = L.Linear(n_in_node + msg_out, n_hid, initialW=w, initial_bias=b)
            self.out_fc2 = L.Linear(n_hid, n_hid, initialW=w, initial_bias=b)
            self.out_fc3 = L.Linear(n_hid, n_in_node, initialW=w, initial_bias=b)

        self.msg_out_shape = msg_out
        self.skip_first_edge_type = skip_first

        logger = logging.getLogger(__name__)
        logger.info('Using learned interaction net decoder.')

        self.dropout_prob = do_prob 
開發者ID:chainer,項目名稱:models,代碼行數:24,代碼來源:mlp_decoder.py

示例9: __init__

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import ChainList [as 別名]
def __init__(self, n_in_node, edge_types, n_hid, do_prob=0., skip_first=False):
        super(RNNDecoder, self).__init__()

        self.msg_fc1 = chainer.ChainList(
            [L.Linear(2 * n_hid, n_hid) for _ in range(edge_types)])
        self.msg_fc2 = chainer.ChainList(
            [L.Linear(n_hid, n_hid) for _ in range(edge_types)])
        self.msg_out_shape = n_hid
        self.skip_first_edge_type = skip_first

        self.hidden_r = L.Linear(n_hid, n_hid, bias=False)
        self.hidden_i = L.Linear(n_hid, n_hid, bias=False)
        self.hidden_h = L.Linear(n_hid, n_hid, bias=False)

        self.input_r = L.Linear(n_in_node, n_hid, bias=True)
        self.input_i = L.Linear(n_in_node, n_hid, bias=True)
        self.input_n = L.Linear(n_in_node, n_hid, bias=True)

        self.out_fc1 = L.Linear(n_hid, n_hid)
        self.out_fc2 = L.Linear(n_hid, n_hid)
        self.out_fc3 = L.Linear(n_hid, n_in_node)

        print('Using learned recurrent interaction net decoder.')

        self.dropout_prob = do_prob 
開發者ID:chainer,項目名稱:models,代碼行數:27,代碼來源:rnn_decoder.py

示例10: __init__

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import ChainList [as 別名]
def __init__(self,
                 input_dim,
                 num_layers=1,
                 activation=F.relu):
        super(Highway, self).__init__()
        self._input_dim = input_dim
        with self.init_scope():
            self._layers = chainer.ChainList(*[L.Linear(input_dim, input_dim * 2)
                                               for _ in range(num_layers)])
        self._activation = activation
        for layer in self._layers:
            # We should bias the highway layer to just carry its input forward.  We do that by
            # setting the bias on `B(x)` to be positive, because that means `g` will be biased to
            # be high, to we will carry the input forward.  The bias on `B(x)` is the second half
            # of the bias vector in each Linear layer.
            layer.b.data[input_dim:] = 1. 
開發者ID:chainer,項目名稱:models,代碼行數:18,代碼來源:highway.py

示例11: __init__

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import ChainList [as 別名]
def __init__(
            self, n_class, aspect_ratios,
            initialW=None, initial_bias=None):
        self.n_class = n_class
        self.aspect_ratios = aspect_ratios

        super(Multibox, self).__init__()
        with self.init_scope():
            self.loc = chainer.ChainList()
            self.conf = chainer.ChainList()

        if initialW is None:
            initialW = initializers.LeCunUniform()
        if initial_bias is None:
            initial_bias = initializers.Zero()
        init = {'initialW': initialW, 'initial_bias': initial_bias}

        for ar in aspect_ratios:
            n = (len(ar) + 1) * 2
            self.loc.add_link(L.Convolution2D(n * 4, 3, pad=1, **init))
            self.conf.add_link(L.Convolution2D(
                n * self.n_class, 3, pad=1, **init)) 
開發者ID:chainer,項目名稱:chainercv,代碼行數:24,代碼來源:multibox.py

示例12: __init__

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import ChainList [as 別名]
def __init__(self, n_vocab, n_layers, n_units, typ="lstm"):
        super(RNNLM, self).__init__()
        with self.init_scope():
            self.embed = DL.EmbedID(n_vocab, n_units)
            self.rnn = (
                chainer.ChainList(
                    *[L.StatelessLSTM(n_units, n_units) for _ in range(n_layers)]
                )
                if typ == "lstm"
                else chainer.ChainList(
                    *[L.StatelessGRU(n_units, n_units) for _ in range(n_layers)]
                )
            )
            self.lo = L.Linear(n_units, n_vocab)

        for param in self.params():
            param.data[...] = np.random.uniform(-0.1, 0.1, param.data.shape)
        self.n_layers = n_layers
        self.n_units = n_units
        self.typ = typ 
開發者ID:espnet,項目名稱:espnet,代碼行數:22,代碼來源:lm.py

示例13: __init__

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import ChainList [as 別名]
def __init__(self, use_reconstruction=False):
        super(CapsNet, self).__init__()
        self.n_iterations = 3  # dynamic routing
        self.n_grids = 6  # grid width of primary capsules layer
        self.n_raw_grids = self.n_grids
        self.use_reconstruction = use_reconstruction
        with self.init_scope():
            self.conv1 = L.Convolution2D(1, 256, ksize=9, stride=1,
                                         initialW=init)
            self.conv2 = L.Convolution2D(256, 32 * 8, ksize=9, stride=2,
                                         initialW=init)
            self.Ws = chainer.ChainList(
                *[L.Convolution2D(8, 16 * 10, ksize=1, stride=1, initialW=init)
                  for i in range(32)])

            self.fc1 = L.Linear(16 * 10, 512, initialW=init)
            self.fc2 = L.Linear(512, 1024, initialW=init)
            self.fc3 = L.Linear(1024, 784, initialW=init)

        _count_params(self, n_grids=self.n_grids)
        self.results = {'N': 0., 'loss': [], 'correct': [],
                        'cls_loss': [], 'rcn_loss': []} 
開發者ID:soskek,項目名稱:dynamic_routing_between_capsules,代碼行數:24,代碼來源:nets.py

示例14: __init__

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import ChainList [as 別名]
def __init__(self, out_dim, in_dim=3, max_level=10, dropout_ratio=-1,
                 use_bn=True, compute_accuracy=True, cdim=3):
        super(KDNetCls, self).__init__()
        if max_level <= 10:
            # depth 10
            ch_list = [in_dim] + [32, 64, 64, 128, 128, 256, 256,
                                  512, 512, 128]
            ch_list = ch_list[:max_level + 1]
        elif max_level <= 15:
            # depth 15
            ch_list = [in_dim] + [16, 16, 32, 32, 64, 64, 128, 128, 256, 256,
                                  512, 512, 1024, 1024, 128]
            ch_list = ch_list[:max_level + 1]
        else:
            raise NotImplementedError('depth {} is not implemented yet'
                                      .format(max_level))
        with self.init_scope():
            self.kdconvs = chainer.ChainList(
                *[KDConv(ch_list[i], ch_list[i+1], use_bn=use_bn, cdim=cdim)
                  for i in range(len(ch_list)-1)])
            self.linear = links.Linear(ch_list[-1], out_dim)
        self.compute_accuracy = compute_accuracy
        self.max_level = max_level
        self.dropout_ratio = dropout_ratio 
開發者ID:corochann,項目名稱:chainer-pointnet,代碼行數:26,代碼來源:kdnet_cls.py

示例15: __init__

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import ChainList [as 別名]
def __init__(self, mlp, mlp2, in_channels=None, use_bn=True,
                 activation=functions.relu, residual=False):
        # k is number of sampled point (num_region)
        super(SetAbstractionGroupAllModule, self).__init__()
        # Feature Extractor channel list
        assert isinstance(mlp, list)
        fe_ch_list = [in_channels] + mlp
        # Head channel list
        if mlp2 is None:
            mlp2 = []
        assert isinstance(mlp2, list)
        head_ch_list = [mlp[-1]] + mlp2
        with self.init_scope():
            self.sampling_grouping = SamplingGroupingAllModule()
            self.feature_extractor_list = chainer.ChainList(
                *[ConvBlock(fe_ch_list[i], fe_ch_list[i+1], ksize=1,
                            use_bn=use_bn, activation=activation,
                            residual=residual
                            ) for i in range(len(mlp))])
            self.head_list = chainer.ChainList(
                *[ConvBlock(head_ch_list[i], head_ch_list[i + 1], ksize=1,
                            use_bn=use_bn, activation=activation,
                            residual=residual
                            ) for i in range(len(mlp2))])
        self.use_bn = use_bn 
開發者ID:corochann,項目名稱:chainer-pointnet,代碼行數:27,代碼來源:set_abstraction_all_block.py


注:本文中的chainer.ChainList方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。