本文整理匯總了Python中chainer.Chain方法的典型用法代碼示例。如果您正苦於以下問題:Python chainer.Chain方法的具體用法?Python chainer.Chain怎麽用?Python chainer.Chain使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer
的用法示例。
在下文中一共展示了chainer.Chain方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: setUp
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Chain [as 別名]
def setUp(self):
class Model(chainer.Chain):
def __init__(self, ops, args, input_argname):
super(Model, self).__init__()
self.ops = getattr(F, ops)
self.args = args
self.input_argname = input_argname
def __call__(self, x):
self.args[self.input_argname] = x
return self.ops(**self.args)
self.model = Model(self.ops, self.args, self.input_argname)
self.x = input_generator.increasing(*self.input_shape)
示例2: make_model
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Chain [as 別名]
def make_model(self, env):
n_dim_obs = env.observation_space.low.size
n_dim_action = env.action_space.low.size
n_hidden_channels = 50
policy = Sequence(
L.Linear(n_dim_obs, n_hidden_channels),
F.relu,
L.Linear(n_hidden_channels, n_hidden_channels),
F.relu,
L.LSTM(n_hidden_channels, n_hidden_channels),
policies.FCGaussianPolicy(
n_input_channels=n_hidden_channels,
action_size=n_dim_action,
min_action=env.action_space.low,
max_action=env.action_space.high)
)
q_func = q_function.FCLSTMSAQFunction(
n_dim_obs=n_dim_obs,
n_dim_action=n_dim_action,
n_hidden_layers=2,
n_hidden_channels=n_hidden_channels)
return chainer.Chain(policy=policy, q_function=q_func)
示例3: test_chain
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Chain [as 別名]
def test_chain(self):
ch = chainer.Chain()
with ch.init_scope():
ch.l1 = chainer.links.Linear(3, 4)
ch.l2 = chainer.links.Linear(5)
ch.l3 = chainer.links.PReLU()
self.assertEqual(
names_of_links(ch),
{'/l1', '/l2', '/l3'})
to_factorized_noisy(ch)
self.assertEqual(
names_of_links(ch),
{
'/l1', '/l1/mu', '/l1/sigma',
'/l2', '/l2/mu', '/l2/sigma', '/l3'})
示例4: _test
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Chain [as 別名]
def _test(self, gpu):
model = chainer.Chain(
a=L.Linear(1, 2, initialW=3, initial_bias=3),
b=chainer.Chain(c=L.Linear(2, 3, initialW=4, initial_bias=4)),
)
if gpu >= 0:
model.to_gpu(gpu)
xp = model.xp
else:
xp = np
optimizer = chainer.optimizers.SGD(self.lr)
optimizer.setup(model)
optimizer.add_hook(
chainerrl.optimizers.NonbiasWeightDecay(
rate=self.weight_decay_rate))
optimizer.update(lambda: chainer.Variable(xp.asarray(0.0)))
decay_factor = 1 - self.lr * self.weight_decay_rate
xp.testing.assert_allclose(model.a.W.array, 3 * decay_factor)
xp.testing.assert_allclose(model.a.b.array, 3)
xp.testing.assert_allclose(model.b.c.W.array, 4 * decay_factor)
xp.testing.assert_allclose(model.b.c.b.array, 4)
示例5: test_soft_copy_param_scalar
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Chain [as 別名]
def test_soft_copy_param_scalar(self):
a = chainer.Chain()
with a.init_scope():
a.p = chainer.Parameter(np.array(0.5))
b = chainer.Chain()
with b.init_scope():
b.p = chainer.Parameter(np.array(1))
# a = (1 - tau) * a + tau * b
copy_param.soft_copy_param(target_link=a, source_link=b, tau=0.1)
np.testing.assert_almost_equal(a.p.array, 0.55)
np.testing.assert_almost_equal(b.p.array, 1.0)
copy_param.soft_copy_param(target_link=a, source_link=b, tau=0.1)
np.testing.assert_almost_equal(a.p.array, 0.595)
np.testing.assert_almost_equal(b.p.array, 1.0)
示例6: apply_to_seq
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Chain [as 別名]
def apply_to_seq(self, seq_list):
mb_size = len(seq_list)
mb_initial_cell, mb_initial_state = self.get_initial_states(mb_size)
return self.nstep_lstm(mb_initial_cell, mb_initial_state, seq_list)
# class DoubleGRU(Chain):
# def __init__(self, H, I):
# log.info("using double GRU")
# self.H1 = H/2
# self.H2 = H - self.H1
# super(DoubleGRU, self).__init__(
# gru1 = faster_gru.GRU(self.H1, I),
# gru2 = faster_gru.GRU(self.H2, self.H1)
# )
#
# def __call__(self, prev_state, inpt):
# prev_state1, prev_state2 = F.split_axis(prev_state, (self.H1,), axis = 1)
#
# prev_state1 = self.gru1(prev_state1, inpt)
# prev_state2 = self.gru2(prev_state2, prev_state1)
#
# return F.concat((prev_state1, prev_state2), axis = 1)
示例7: test_lazy_init
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Chain [as 別名]
def test_lazy_init(self):
class Test(chainer.Chain):
def forward(self, x):
if x is None:
x = 42
return x
id2type = generate_id2type_from_forward(Test(), (None,))
self.assertEqual(str(id2type[1]), "class Test -> NoneType -> int") # FunctionDef forward (line 1)
self.assertEqual(str(id2type[7]), "NoneType") # If
self.assertEqual(str(id2type[8]), "bool") # Compare (line 2)
self.assertEqual(str(id2type[9]), "NoneType") # Name x (line 2)
self.assertEqual(str(id2type[13]), "NoneType") # Assign
self.assertEqual(str(id2type[14]), "int") # Name x (line 3)
self.assertEqual(str(id2type[16]), "int") # Num 42 (line 3)
self.assertEqual(str(id2type[17]), "int") # Return
self.assertEqual(str(id2type[18]), "int") # Name x (line 4)
示例8: test_lazy_init_branch_if
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Chain [as 別名]
def test_lazy_init_branch_if(self):
type_inference_tools.reset_state()
class Test(chainer.Chain):
def forward(self, x):
if x is None:
x = 42
else:
x += 1
return x
id2type = generate_id2type_from_forward(Test(), (None,))
self.assertEqual(str(id2type[1]), "class Test -> NoneType -> int") # FunctionDef forward (line 1)
self.assertEqual(str(id2type[7]), "NoneType") # If
self.assertEqual(str(id2type[8]), "bool") # Compare (line 2)
self.assertEqual(str(id2type[9]), "NoneType") # Name x (line 2)
self.assertEqual(str(id2type[13]), "NoneType") # Assign
self.assertEqual(str(id2type[14]), "int") # Name x (line 3)
self.assertEqual(str(id2type[16]), "int") # Num 42 (line 3)
self.assertEqual(str(id2type[17]), "NoneType") # AugAssign
self.assertEqual(str(id2type[18]), "a1 (from line 5)") # Name x (line 5)
self.assertEqual(str(id2type[21]), "int") # Num 1 (line 5)
self.assertEqual(str(id2type[22]), "int") # Return
self.assertEqual(str(id2type[23]), "int") # Name x (line 6)
示例9: test_lazy_init_branch_else
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Chain [as 別名]
def test_lazy_init_branch_else(self):
class Test(chainer.Chain):
def forward(self, x):
if x is None:
x = 42
else:
x += 1
return x
# XXX: the input is different from the previous one
id2type = generate_id2type_from_forward(Test(), (2,))
self.assertEqual(str(id2type[1]), "class Test -> int -> int") # FunctionDef forward (line 1)
self.assertEqual(str(id2type[7]), "NoneType") # If
self.assertEqual(str(id2type[8]), "bool") # Compare (line 2)
self.assertEqual(str(id2type[9]), "int") # Name x (line 2)
self.assertEqual(str(id2type[13]), "NoneType") # Assign
self.assertEqual(str(id2type[14]), "int") # Name x (line 3)
self.assertEqual(str(id2type[16]), "int") # Num 42 (line 3)
self.assertEqual(str(id2type[17]), "NoneType") # AugAssign
self.assertEqual(str(id2type[18]), "int") # Name x (line 5)
self.assertEqual(str(id2type[21]), "int") # Num 1 (line 5)
self.assertEqual(str(id2type[22]), "int") # Return
self.assertEqual(str(id2type[23]), "int") # Name x (line 6)
示例10: nasnet_dual_path_scheme_ordinal
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Chain [as 別名]
def nasnet_dual_path_scheme_ordinal(block,
x,
_):
"""
NASNet specific scheme of dual path response for an ordinal block with dual inputs/outputs in a DualPathSequential
block.
Parameters:
----------
block : Chain
A block.
x : Tensor
Current processed tensor.
Returns
-------
x_next : Tensor
Next processed tensor.
x : Tensor
Current processed tensor.
"""
return block(x), x
示例11: test_fake_as_funcnode_without_replace
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Chain [as 別名]
def test_fake_as_funcnode_without_replace():
class Model(chainer.Chain):
def _init__(self):
super().__init__()
def add(self, xs, value=0.01):
return xs.array + value
def __call__(self, xs):
return F.sigmoid(self.add(xs))
model = Model()
x = input_generator.increasing(3, 4)
onnx_model = export(model, x)
sigmoid_nodes = [
node for node in onnx_model.graph.node if node.op_type == 'Sigmoid']
assert len(sigmoid_nodes) == 1
# sigmoid node should be expected to connect with input
# but the connection is cut because `add` method takes array.
assert not sigmoid_nodes[0].input[0] == 'Input_0'
示例12: get_model
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Chain [as 別名]
def get_model(self):
class Model(chainer.Chain):
def __init__(self):
super().__init__()
with self.init_scope():
self.l = L.Linear(None, 2)
def half(self, xs, value=0.5):
return xs * value
def forward(self, xs):
h = self.l(xs)
h = self.half(h)
return F.sum(chainer.as_variable(h))
return Model()
示例13: setUp
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Chain [as 別名]
def setUp(self):
class Model(chainer.Chain):
def __init__(self, ops):
super(Model, self).__init__()
self.ops = ops
def __call__(self, a, b, c):
if not isinstance(a, chainer.Variable):
a = chainer.Variable(a)
if not isinstance(b, chainer.Variable):
b = chainer.Variable(b)
if not isinstance(c, chainer.Variable):
c = chainer.Variable(c)
return eval(self.ops)
self.model = Model(self.ops)
a = chainer.Variable(input_generator.increasing(2, 3))
b = chainer.Variable(input_generator.increasing(2, 3) * 0.3)
c = chainer.Variable(input_generator.increasing(2, 3) * 0.7)
self.x = (a, b, c)
示例14: test_output
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Chain [as 別名]
def test_output(self):
class Model(chainer.Chain):
def __init__(self, op, axis):
self.axis = axis
self.op = getattr(F, op)
super(Model, self).__init__()
def forward(self, x):
return self.op(x, axis=self.axis)
x = np.random.rand(2, 3).astype(np.float32)
axis = getattr(self, 'axis', None)
model = Model(self.op, axis)
name = self.op
if axis is not None:
name += '_axis_{}'.format(self.axis)
self.expect(model, x, name=name, expected_num_initializers=0)
示例15: setUp
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import Chain [as 別名]
def setUp(self):
class Model(chainer.Chain):
def __init__(self, link, args, kwargs):
super(Model, self).__init__()
with self.init_scope():
self.l1 = link(*args, **kwargs)
def __call__(self, x):
return self.l1(x)
self.model = Model(self.link, self.args, self.kwargs)
if self.link is L.EmbedID:
self.x = np.random.randint(0, self.args[0], size=self.in_shape)
self.x = self.x.astype(self.in_type)
else:
self.x = input_generator.increasing(
*self.in_shape, dtype=self.in_type)