本文整理匯總了Python中cartopy.crs.Mercator方法的典型用法代碼示例。如果您正苦於以下問題:Python crs.Mercator方法的具體用法?Python crs.Mercator怎麽用?Python crs.Mercator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cartopy.crs
的用法示例。
在下文中一共展示了crs.Mercator方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_data
# 需要導入模塊: from cartopy import crs [as 別名]
# 或者: from cartopy.crs import Mercator [as 別名]
def plot_data(column, i, title):
"Plot the column from the DataFrame in the ith subplot"
crs = ccrs.PlateCarree()
ax = plt.subplot(2, 2, i, projection=ccrs.Mercator())
ax.set_title(title)
# Set vmin and vmax to the extremes of the original data
maxabs = vd.maxabs(data.air_temperature_c)
mappable = ax.scatter(
data.longitude,
data.latitude,
c=data[column],
s=50,
cmap="seismic",
vmin=-maxabs,
vmax=maxabs,
transform=crs,
)
# Set the proper ticks for a Cartopy map
vd.datasets.setup_texas_wind_map(ax)
return mappable
示例2: _finalize_axis
# 需要導入模塊: from cartopy import crs [as 別名]
# 或者: from cartopy.crs import Mercator [as 別名]
def _finalize_axis(self, *args, **kwargs):
gridlabels = self.geographic and isinstance(self.projection, (ccrs.PlateCarree, ccrs.Mercator))
if gridlabels:
xaxis, yaxis = self.xaxis, self.yaxis
self.xaxis = self.yaxis = None
try:
ret = super(GeoOverlayPlot, self)._finalize_axis(*args, **kwargs)
except Exception as e:
raise e
finally:
if gridlabels:
self.xaxis, self.yaxis = xaxis, yaxis
axis = self.handles['axis']
if self.show_grid:
axis.grid()
if self.global_extent:
axis.set_global()
return ret
示例3: __init__
# 需要導入模塊: from cartopy import crs [as 別名]
# 或者: from cartopy.crs import Mercator [as 別名]
def __init__(self, element, **params):
super(GeoPlot, self).__init__(element, **params)
self.geographic = is_geographic(self.hmap.last)
if self.geographic and not isinstance(self.projection, (PlateCarree, Mercator)):
self.xaxis = None
self.yaxis = None
self.show_frame = False
show_bounds = self._traverse_options(element, 'plot', ['show_bounds'],
defaults=False)
self.show_bounds = not any(not sb for sb in show_bounds.get('show_bounds', []))
if self.show_grid:
param.main.warning(
'Grid lines do not reflect {0}; to do so '
'multiply the current element by gv.feature.grid() '
'and disable the show_grid option.'.format(self.projection)
)
示例4: plot_data
# 需要導入模塊: from cartopy import crs [as 別名]
# 或者: from cartopy.crs import Mercator [as 別名]
def plot_data(column, i, title):
"Plot the column from the DataFrame in the ith subplot"
crs = ccrs.PlateCarree()
ax = plt.subplot(2, 2, i, projection=ccrs.Mercator())
ax.set_title(title)
# Set vmin and vmax to the extremes of the original data
maxabs = utils.maxabs(data.total_field_anomaly_nt)
mappable = ax.scatter(
data.longitude,
data.latitude,
c=data[column],
s=1,
cmap="seismic",
vmin=-maxabs,
vmax=maxabs,
transform=crs,
)
# Set the proper ticks for a Cartopy map
fetch_data.setup_rio_magnetic_map(ax)
return mappable
示例5: plot_data
# 需要導入模塊: from cartopy import crs [as 別名]
# 或者: from cartopy.crs import Mercator [as 別名]
def plot_data(coordinates, velocity, weights, title_data, title_weights):
"Make two maps of our data, one with the data and one with the weights/uncertainty"
fig, axes = plt.subplots(
1, 2, figsize=(9.5, 7), subplot_kw=dict(projection=ccrs.Mercator())
)
crs = ccrs.PlateCarree()
ax = axes[0]
ax.set_title(title_data)
maxabs = vd.maxabs(velocity)
pc = ax.scatter(
*coordinates,
c=velocity,
s=30,
cmap="seismic",
vmin=-maxabs,
vmax=maxabs,
transform=crs,
)
plt.colorbar(pc, ax=ax, orientation="horizontal", pad=0.05).set_label("m/yr")
vd.datasets.setup_california_gps_map(ax)
ax = axes[1]
ax.set_title(title_weights)
pc = ax.scatter(
*coordinates, c=weights, s=30, cmap="magma", transform=crs, norm=LogNorm()
)
plt.colorbar(pc, ax=ax, orientation="horizontal", pad=0.05)
vd.datasets.setup_california_gps_map(ax)
plt.tight_layout()
plt.show()
# Plot the data and the uncertainties
示例6: test_setup_texas_wind
# 需要導入模塊: from cartopy import crs [as 別名]
# 或者: from cartopy.crs import Mercator [as 別名]
def test_setup_texas_wind():
"Test the map setup"
fig = plt.figure()
ax = plt.subplot(111, projection=ccrs.Mercator())
setup_texas_wind_map(ax)
return fig
示例7: test_setup_baja_bathymetry
# 需要導入模塊: from cartopy import crs [as 別名]
# 或者: from cartopy.crs import Mercator [as 別名]
def test_setup_baja_bathymetry():
"Test the map setup"
fig = plt.figure()
ax = plt.subplot(111, projection=ccrs.Mercator())
setup_baja_bathymetry_map(ax)
return fig
示例8: test_setup_rio_magnetic
# 需要導入模塊: from cartopy import crs [as 別名]
# 或者: from cartopy.crs import Mercator [as 別名]
def test_setup_rio_magnetic():
"Test the map setup"
fig = plt.figure()
ax = plt.subplot(111, projection=ccrs.Mercator())
setup_rio_magnetic_map(ax)
return fig
示例9: load
# 需要導入模塊: from cartopy import crs [as 別名]
# 或者: from cartopy.crs import Mercator [as 別名]
def load(self, df, centerings):
"""
A meta-method which abstracts the internals of individual projections' load procedures.
Parameters
----------
df : GeoDataFrame
The GeoDataFrame which has been passed as input to the plotter at the top level.
This data is needed to calculate reasonable centering variables in cases in which the
user does not already provide them; which is, incidentally, the reason behind all of
this funny twice-instantiation loading in the first place.
centerings: dict
A dictionary containing names and centering methods. Certain projections have certain
centering parameters whilst others lack them. For example, the geospatial projection
contains both ``central_longitude`` and ``central_latitude`` instance parameter, which
together control the center of the plot, while the North Pole Stereo projection has
only a ``central_longitude`` instance parameter, implying that latitude is fixed (as
indeed it is, as this projection is centered on the North Pole!).
A top-level centerings method is provided in each of the ``geoplot`` top-level plot
functions; each of the projection wrapper classes defined here in turn selects the
functions from this list relevent to this particular instance and passes them to
the ``_generic_load`` method here.
We then in turn execute these functions to get defaults for our ``df`` and pass them
off to our output ``cartopy.crs`` instance.
Returns
-------
crs : ``cartopy.crs`` object instance
Returns a ``cartopy.crs`` object instance whose appropriate instance variables have
been set to reasonable defaults wherever not already provided by the user.
"""
# WebMercator is a special case.
if self.__class__.__name__ == 'WebMercator':
class WebMercator(ccrs.Mercator):
def __init__(self, args):
super().__init__(
central_longitude=0,
min_latitude=-85.0511287798066,
max_latitude=85.0511287798066,
globe=ccrs.Globe(
ellipse=None,
semimajor_axis=ccrs.WGS84_SEMIMAJOR_AXIS,
semiminor_axis=ccrs.WGS84_SEMIMAJOR_AXIS,
nadgrids='@null'
),
**args
)
return WebMercator(self.args)
else:
return getattr(ccrs, self.__class__.__name__)(**{**centerings, **self.args})
示例10: _process_element
# 需要導入模塊: from cartopy import crs [as 別名]
# 或者: from cartopy.crs import Mercator [as 別名]
def _process_element(self, element):
proj = self.p.projection
irregular = any(element.interface.irregular(element, kd)
for kd in element.kdims)
zs = element.dimension_values(2, flat=False)
if irregular:
X, Y = [np.asarray(element.interface.coords(
element, kd, expanded=True, edges=False))
for kd in element.kdims]
else:
X = element.interface.coords(element, 0, True, True, False)
if np.all(X[0, 1:] < X[0, :-1]):
X = X[:, ::-1]
Y = element.interface.coords(element, 1, True, True, False)
if np.all(Y[1:, 0] < Y[:-1, 0]):
Y = Y[::-1, :]
if X.shape != zs.shape:
X = X[:-1] + np.diff(X, axis=0)/2.
X = X[:, :-1] + (np.diff(X, axis=1)/2.)
if Y.shape != zs.shape:
Y = Y[:-1] + np.diff(Y, axis=0)/2.
Y = Y[:, :-1] + (np.diff(Y, axis=1)/2.)
coords = proj.transform_points(element.crs, X, Y)
PX, PY = coords[..., 0], coords[..., 1]
# Mask quads which are wrapping around the x-axis
wrap_proj_types = (ccrs._RectangularProjection,
ccrs._WarpedRectangularProjection,
ccrs.InterruptedGoodeHomolosine,
ccrs.Mercator)
if isinstance(proj, wrap_proj_types):
with np.errstate(invalid='ignore'):
edge_lengths = np.hypot(
np.diff(PX, axis=1),
np.diff(PY, axis=1)
)
to_mask = (
(edge_lengths >= abs(proj.x_limits[1] -
proj.x_limits[0]) / 2) |
np.isnan(edge_lengths)
)
if np.any(to_mask):
mask = np.zeros(zs.shape, dtype=np.bool)
mask[:, 1:][to_mask] = True
mask[:, 2:][to_mask[:, :-1]] = True
mask[:, :-1][to_mask] = True
mask[:, :-2][to_mask[:, 1:]] = True
mask[1:, 1:][to_mask[:-1]] = True
mask[1:, :-1][to_mask[:-1]] = True
mask[:-1, 1:][to_mask[1:]] = True
mask[:-1, :-1][to_mask[1:]] = True
zs[mask] = np.NaN
params = get_param_values(element)
return element.clone((PX, PY, zs), crs=self.p.projection, **params)