當前位置: 首頁>>代碼示例>>Python>>正文


Python capsulelayers.CapsuleLayer方法代碼示例

本文整理匯總了Python中capsulelayers.CapsuleLayer方法的典型用法代碼示例。如果您正苦於以下問題:Python capsulelayers.CapsuleLayer方法的具體用法?Python capsulelayers.CapsuleLayer怎麽用?Python capsulelayers.CapsuleLayer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在capsulelayers的用法示例。


在下文中一共展示了capsulelayers.CapsuleLayer方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: CapsNet

# 需要導入模塊: import capsulelayers [as 別名]
# 或者: from capsulelayers import CapsuleLayer [as 別名]
def CapsNet(input_shape, n_class, routings):
    """
    Defining the CapsNet
    :param input_shape: data shape, 3d, [width, height, channels]
    :param n_class: number of classes
    :param routings: number of routing iterations
    :return: Two Keras Models, the first one used for training, and the second one for evaluation.
    """
    x = layers.Input(shape=input_shape)
    conv1 = layers.Conv2D(filters=64, kernel_size=3, strides=1, padding='valid', activation='relu', name='conv1')(x)
    conv2 = layers.Conv2D(filters=128, kernel_size=3, strides=1, padding='valid', activation='relu', name='conv2')(conv1)
    conv3 = layers.Conv2D(filters=256, kernel_size=3, strides=2, padding='valid', activation='relu', name='conv3')(conv2)
    primarycaps = PrimaryCap(conv3, dim_capsule=8, n_channels=32, kernel_size=9, strides=2, padding='valid')
    digitcaps = CapsuleLayer(num_capsule=n_class, dim_capsule=16, routings=routings,channels=32,name='digitcaps')(primarycaps)    
    out_caps = Length(name='capsnet')(digitcaps)

    """
    Decoder Network
    """
    y = layers.Input(shape=(n_class,))
    masked_by_y = Mask()([digitcaps, y])
    masked = Mask()(digitcaps) 

    decoder = models.Sequential(name='decoder')
    decoder.add(Dense(input_dim=16*n_class, activation="relu", output_dim=7*7*32))
    decoder.add(Reshape((7, 7, 32)))
    decoder.add(BatchNormalization(momentum=0.8))
    decoder.add(layers.Deconvolution2D(32, 3, 3,subsample=(1, 1),border_mode='same', activation="relu"))
    decoder.add(layers.Deconvolution2D(16, 3, 3,subsample=(2, 2),border_mode='same', activation="relu"))
    decoder.add(layers.Deconvolution2D(8, 3, 3,subsample=(2, 2),border_mode='same', activation="relu"))
    decoder.add(layers.Deconvolution2D(4, 3, 3,subsample=(1, 1),border_mode='same', activation="relu"))
    decoder.add(layers.Deconvolution2D(1, 3, 3,subsample=(1, 1),border_mode='same', activation="sigmoid"))
    decoder.add(layers.Reshape(target_shape=input_shape, name='out_recon'))     
    
    """
    Models for training and evaluation (prediction)
    """
    train_model = models.Model([x, y], [out_caps, decoder(masked_by_y)])
    eval_model = models.Model(x, [out_caps, decoder(masked)])

    return train_model, eval_model 
開發者ID:vinojjayasundara,項目名稱:textcaps,代碼行數:43,代碼來源:textcaps_emnist_bal.py

示例2: CapsNet

# 需要導入模塊: import capsulelayers [as 別名]
# 或者: from capsulelayers import CapsuleLayer [as 別名]
def CapsNet(input_shape, n_class, num_routing):
    """
    A Capsule Network on MNIST.
    :param input_shape: data shape, 3d, [width, height, channels]
    :param n_class: number of classes
    :param num_routing: number of routing iterations
    :return: Two Keras Models, the first one used for training, and the second one for evaluation.
            `eval_model` can also be used for training.
    """
    x = layers.Input(shape=input_shape)

    # Layer 1: Just a conventional Conv2D layer
    conv1 = layers.Conv2D(filters=256, kernel_size=9, strides=1, padding='valid', activation='relu', name='conv1')(x)

    # Layer 2: Conv2D layer with `squash` activation, then reshape to [None, num_capsule, dim_capsule]
    primarycaps = PrimaryCap(conv1, dim_capsule=8, n_channels=32, kernel_size=9, strides=2, padding='valid')

    # Layer 3: Capsule layer. Routing algorithm works here.
    digitcaps = CapsuleLayer(num_capsule=n_class, dim_capsule=16, num_routing=num_routing,
                             name='digitcaps')(primarycaps)

    # Layer 4: This is an auxiliary layer to replace each capsule with its length. Just to match the true label's shape.
    # If using tensorflow, this will not be necessary. :)
    out_caps = Length(name='capsnet')(digitcaps)

    # Decoder network.
    y = layers.Input(shape=(n_class,))
    masked_by_y = Mask()([digitcaps, y])  # The true label is used to mask the output of capsule layer. For training
    masked = Mask()(digitcaps)  # Mask using the capsule with maximal length. For prediction

    # Shared Decoder model in training and prediction
    decoder = models.Sequential(name='decoder')
    decoder.add(layers.Dense(512, activation='relu', input_dim=16*n_class))
    decoder.add(layers.Dense(1024, activation='relu'))
    decoder.add(layers.Dense(np.prod(input_shape), activation='sigmoid'))
    decoder.add(layers.Reshape(target_shape=input_shape, name='out_recon'))

    # Models for training and evaluation (prediction)
    train_model = models.Model([x, y], [out_caps, decoder(masked_by_y)])
    eval_model = models.Model(x, [out_caps, decoder(masked)])
    return train_model, eval_model 
開發者ID:XifengGuo,項目名稱:CapsNet-Fashion-MNIST,代碼行數:43,代碼來源:capsulenet.py

示例3: capsnet

# 需要導入模塊: import capsulelayers [as 別名]
# 或者: from capsulelayers import CapsuleLayer [as 別名]
def capsnet(batch_size, n_class, num_routing,recon_loss_weight):
    # data.shape = [batch_size, 1, 28, 28]
    data = mx.sym.Variable('data')

    input_shape = (1, 28, 28)
    # Conv2D layer
    # net.shape = [batch_size, 256, 20, 20]
    conv1 = mx.sym.Convolution(data=data,
                               num_filter=256,
                               kernel=(9, 9),
                               layout='NCHW',
                               name='conv1')
    conv1 = mx.sym.Activation(data=conv1, act_type='relu', name='conv1_act')
    # net.shape = [batch_size, 256, 6, 6]

    primarycaps = primary_caps(data=conv1,
                               dim_vector=8,
                               n_channels=32,
                               kernel=(9, 9),
                               strides=[2, 2],
                               name='primarycaps')
    primarycaps.infer_shape(data=(batch_size, 1, 28, 28))
    # CapsuleLayer
    kernel_initializer = mx.init.Xavier(rnd_type='uniform', factor_type='avg', magnitude=3)
    bias_initializer = mx.init.Zero()
    digitcaps = CapsuleLayer(num_capsule=10,
                             dim_vector=16,
                             batch_size=batch_size,
                             kernel_initializer=kernel_initializer,
                             bias_initializer=bias_initializer,
                             num_routing=num_routing)(primarycaps)

    # out_caps : (batch_size, 10)
    out_caps = mx.sym.sqrt(data=mx.sym.sum(mx.sym.square(digitcaps), 2))
    out_caps.infer_shape(data=(batch_size, 1, 28, 28))

    y = mx.sym.Variable('softmax_label', shape=(batch_size,))
    y_onehot = mx.sym.one_hot(y, n_class)
    y_reshaped = mx.sym.Reshape(data=y_onehot, shape=(batch_size, -4, n_class, -1))
    y_reshaped.infer_shape(softmax_label=(batch_size,))

    # inputs_masked : (batch_size, 16)
    inputs_masked = mx.sym.linalg_gemm2(y_reshaped, digitcaps, transpose_a=True)
    inputs_masked = mx.sym.Reshape(data=inputs_masked, shape=(-3, 0))
    x_recon = mx.sym.FullyConnected(data=inputs_masked, num_hidden=512, name='x_recon')
    x_recon = mx.sym.Activation(data=x_recon, act_type='relu', name='x_recon_act')
    x_recon = mx.sym.FullyConnected(data=x_recon, num_hidden=1024, name='x_recon2')
    x_recon = mx.sym.Activation(data=x_recon, act_type='relu', name='x_recon_act2')
    x_recon = mx.sym.FullyConnected(data=x_recon, num_hidden=np.prod(input_shape), name='x_recon3')
    x_recon = mx.sym.Activation(data=x_recon, act_type='sigmoid', name='x_recon_act3')

    data_flatten = mx.sym.flatten(data=data)
    squared_error = mx.sym.square(x_recon-data_flatten)
    recon_error = mx.sym.mean(squared_error)
    recon_error_stopped = recon_error
    recon_error_stopped = mx.sym.BlockGrad(recon_error_stopped)
    loss = mx.symbol.MakeLoss((1-recon_loss_weight)*margin_loss(y_onehot, out_caps)+recon_loss_weight*recon_error)

    out_caps_blocked = out_caps
    out_caps_blocked = mx.sym.BlockGrad(out_caps_blocked)
    return mx.sym.Group([out_caps_blocked, loss, recon_error_stopped]) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:63,代碼來源:capsulenet.py

示例4: MultiLevelDCNet

# 需要導入模塊: import capsulelayers [as 別名]
# 或者: from capsulelayers import CapsuleLayer [as 別名]
def MultiLevelDCNet(input_shape, n_class, routings):
    """
    A DCNet (1-level DCNet) on MNIST.

    :param input_shape: data shape, 3d, [width, height, channels]
    :param n_class: number of classes
    :param routings: number of routing iterations
    :return: Two Keras Models, the first one used for training, and the second one for evaluation.
    """
    
    x = layers.Input(shape=input_shape)
    concat_axis = 1 if K.image_data_format() == 'channels_first' else -1

    ########################### Primary Capsules ###########################
    # Incorporating DenseNets - Creating a dense block with 8 layers having 32 filters and 32 growth rate.
    conv, nb_filter = densenet.DenseBlock(x, growth_rate=32, nb_layers=8, nb_filter=32)
    # Batch Normalization
    DenseBlockOutput = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(conv)

    # Creating Primary Capsules
    # Here PrimaryCapsConv2D is the Conv2D output which is used as the primary capsules by reshaping and squashing (squash activation).
    # primarycaps_1 (size: [None, num_capsule, dim_capsule]) is the "reshaped and sqashed output" which will be further passed to the dynamic routing protocol.
    primarycaps, PrimaryCapsConv2D = PrimaryCap(DenseBlockOutput, dim_capsule=8, n_channels=32, kernel_size=9, strides=2, padding='valid')

    ########################### DigitCaps Output ###########################
    digitcaps = CapsuleLayer(num_capsule=n_class, dim_capsule=16, routings=routings,
                             name='digitcaps0')(primarycaps)
    out_caps = Length(name='capsnet')(digitcaps)


    # Reconstruction (decoder) network
    y = layers.Input(shape=(n_class,))
    masked_by_y = Mask()([digitcaps, y])  # The true label is used to mask the output of capsule layer. For training
    masked = Mask()(digitcaps)  # Mask using the capsule with maximal length. For prediction

    # Shared Decoder model in training and prediction
    decoder = models.Sequential(name='decoder')
    decoder.add(layers.Dense(512, activation='relu', input_dim=int(digitcaps.shape[2]*n_class), name='zero_layer'))
    decoder.add(layers.Dense(512, activation='relu', name='one_layer'))
    decoderFinal = models.Sequential(name='decoderFinal')
    # Concatenating two layers
    decoderFinal.add(layers.Merge([decoder.get_layer('zero_layer'), decoder.get_layer('one_layer')], mode='concat'))
    decoderFinal.add(layers.Dense(1024, activation='relu'))
    decoderFinal.add(layers.Dense(np.prod(input_shape), activation='sigmoid'))
    decoderFinal.add(layers.Reshape(input_shape, name='out_recon'))

    # Model for training
    train_model = models.Model([x, y], [out_caps, decoderFinal(masked_by_y)])

    # Model for evaluation (prediction)
    eval_model = models.Model(x, [out_caps, decoderFinal(masked)])

    return train_model, eval_model 
開發者ID:ssrp,項目名稱:Multi-level-DCNet,代碼行數:55,代碼來源:dcnet.py

示例5: CapsNet

# 需要導入模塊: import capsulelayers [as 別名]
# 或者: from capsulelayers import CapsuleLayer [as 別名]
def CapsNet(input_shape, n_class, routings):
    """
    A Capsule Network on MNIST.
    :param input_shape: data shape, 3d, [width, height, channels]
    :param n_class: number of classes
    :param routings: number of routing iterations
    :return: Two Keras Models, the first one used for training, and the second one for evaluation.
            `eval_model` can also be used for training.
    """
    x = layers.Input(shape=input_shape)

    # Layer 1: Just a conventional Conv2D layer
    conv1 = layers.Conv2D(filters=256, kernel_size=9, strides=1, padding='valid', activation='relu', name='conv1')(x)

    # Layer 2: Conv2D layer with `squash` activation, then reshape to [None, num_capsule, dim_capsule]
    primarycaps = PrimaryCap(conv1, dim_capsule=8, n_channels=32, kernel_size=9, strides=2, padding='valid')

    # Layer 3: Capsule layer. Routing algorithm works here.
    digitcaps = CapsuleLayer(num_capsule=n_class, dim_capsule=16, routings=routings,
                             name='digitcaps')(primarycaps)

    # Layer 4: This is an auxiliary layer to replace each capsule with its length. Just to match the true label's shape.
    # If using tensorflow, this will not be necessary. :)
    out_caps = Length(name='capsnet')(digitcaps)

    # Decoder network.
    y = layers.Input(shape=(n_class,))
    masked_by_y = Mask()([digitcaps, y])  # The true label is used to mask the output of capsule layer. For training
    masked = Mask()(digitcaps)  # Mask using the capsule with maximal length. For prediction

    # Shared Decoder model in training and prediction
    decoder = models.Sequential(name='decoder')
    decoder.add(layers.Dense(512, activation='relu', input_dim=16*n_class))
    decoder.add(layers.Dense(1024, activation='relu'))
    decoder.add(layers.Dense(np.prod(input_shape), activation='sigmoid'))
    decoder.add(layers.Reshape(target_shape=input_shape, name='out_recon'))

    # Models for training and evaluation (prediction)
    train_model = models.Model([x, y], [out_caps, decoder(masked_by_y)])
    eval_model = models.Model(x, [out_caps, decoder(masked)])

    # manipulate model
    noise = layers.Input(shape=(n_class, 16))
    noised_digitcaps = layers.Add()([digitcaps, noise])
    masked_noised_y = Mask()([noised_digitcaps, y])
    manipulate_model = models.Model([x, y, noise], decoder(masked_noised_y))
    return train_model, eval_model, manipulate_model 
開發者ID:XifengGuo,項目名稱:CapsNet-Keras,代碼行數:49,代碼來源:capsulenet.py


注:本文中的capsulelayers.CapsuleLayer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。