當前位置: 首頁>>代碼示例>>Python>>正文


Python workspace.RunOperatorOnce方法代碼示例

本文整理匯總了Python中caffe2.python.workspace.RunOperatorOnce方法的典型用法代碼示例。如果您正苦於以下問題:Python workspace.RunOperatorOnce方法的具體用法?Python workspace.RunOperatorOnce怎麽用?Python workspace.RunOperatorOnce使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在caffe2.python.workspace的用法示例。


在下文中一共展示了workspace.RunOperatorOnce方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: run_add5_and_add5gradient_op

# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunOperatorOnce [as 別名]
def run_add5_and_add5gradient_op(device):
    # clear the workspace before running the operator
    workspace.ResetWorkspace()
    add5 = core.CreateOperator("Add5",
                               ["X"],
                               ["Y"],
                               device_option=device)
    print("==> Running Add5 op:")
    workspace.FeedBlob("X", (np.random.rand(5, 5)), device_option=device)
    print("Input of Add5: ", workspace.FetchBlob("X"))
    workspace.RunOperatorOnce(add5)
    print("Output of Add5: ", workspace.FetchBlob("Y"))

    print("\n\n==> Running Add5Gradient op:")
    print("Input of Add5Gradient: ", workspace.FetchBlob("Y"))
    add5gradient = core.CreateOperator("Add5Gradient",
                                       ["Y"],
                                       ["Z"],
                                       device_option=device)
    workspace.RunOperatorOnce(add5gradient)
    print("Output of Add5Gradient: ", workspace.FetchBlob("Z")) 
開發者ID:facebookarchive,項目名稱:tutorials,代碼行數:23,代碼來源:run_add5_op.py

示例2: enqueue_blobs

# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunOperatorOnce [as 別名]
def enqueue_blobs(self, gpu_id, blob_names, blobs):
        """Put a mini-batch on a BlobsQueue."""
        assert len(blob_names) == len(blobs)
        t = time.time()
        dev = c2_utils.CudaDevice(gpu_id)
        queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name)
        blob_names = ['gpu_{}/{}'.format(gpu_id, b) for b in blob_names]
        for (blob_name, blob) in zip(blob_names, blobs):
            workspace.FeedBlob(blob_name, blob, device_option=dev)
        logger.debug(
            'enqueue_blobs {}: workspace.FeedBlob: {}'.
            format(gpu_id, time.time() - t)
        )
        t = time.time()
        op = core.CreateOperator(
            'SafeEnqueueBlobs', [queue_name] + blob_names,
            blob_names + [queue_name + '_enqueue_status'],
            device_option=dev
        )
        workspace.RunOperatorOnce(op)
        logger.debug(
            'enqueue_blobs {}: workspace.RunOperatorOnce: {}'.
            format(gpu_id, time.time() - t)
        ) 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:26,代碼來源:loader.py

示例3: _CorrectMomentum

# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunOperatorOnce [as 別名]
def _CorrectMomentum(self, correction):
        """The MomentumSGDUpdate op implements the update V as

            V := mu * V + lr * grad,

        where mu is the momentum factor, lr is the learning rate, and grad is
        the stochastic gradient. Since V is not defined independently of the
        learning rate (as it should ideally be), when the learning rate is
        changed we should scale the update history V in order to make it
        compatible in scale with lr * grad.
        """
        logger.info(
            'Scaling update history by {:.6f} (new lr / old lr)'.
            format(correction))
        for i in range(cfg.NUM_GPUS):
            with c2_utils.CudaScope(i):
                for param in self.TrainableParams(gpu_id=i):
                    op = core.CreateOperator(
                        'Scale', [param + '_momentum'], [param + '_momentum'],
                        scale=correction)
                    workspace.RunOperatorOnce(op) 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:23,代碼來源:detector.py

示例4: _run_test

# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunOperatorOnce [as 別名]
def _run_test(self, A, B, check_grad=False):
        with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)):
            op = core.CreateOperator('SpatialNarrowAs', ['A', 'B'], ['C'])
            workspace.FeedBlob('A', A)
            workspace.FeedBlob('B', B)
        workspace.RunOperatorOnce(op)
        C = workspace.FetchBlob('C')

        if check_grad:
            gc = gradient_checker.GradientChecker(
                stepsize=0.005,
                threshold=0.005,
                device_option=core.DeviceOption(caffe2_pb2.CUDA, 0)
            )

            res, grad, grad_estimated = gc.CheckSimple(op, [A, B], 0, [0])
            self.assertTrue(res, 'Grad check failed')

        dims = C.shape
        C_ref = A[:dims[0], :dims[1], :dims[2], :dims[3]]
        np.testing.assert_allclose(C, C_ref, rtol=1e-5, atol=1e-08) 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:23,代碼來源:test_spatial_narrow_as_op.py

示例5: enqueue_blobs

# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunOperatorOnce [as 別名]
def enqueue_blobs(
        self,
        gpu_id,
        enqueue_blobs_names,
        blob_values,
    ):
        enqueue_blobs_names = [
            'gpu_{}/{}'.format(
                gpu_id, enqueue_blob_name
            ) for enqueue_blob_name in enqueue_blobs_names
        ]

        deviceOption = core.DeviceOption(caffe2_pb2.CUDA, gpu_id)
        for (blob_name, blob) in zip(enqueue_blobs_names, blob_values):
            workspace.FeedBlob(blob_name, blob, device_option=deviceOption)

        queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name)
        workspace.RunOperatorOnce(
            core.CreateOperator(
                'SafeEnqueueBlobs',
                [queue_name] + enqueue_blobs_names,
                enqueue_blobs_names + [queue_name + '_enqueue_status'],
                device_option=deviceOption,
            )
        ) 
開發者ID:facebookresearch,項目名稱:video-long-term-feature-banks,代碼行數:27,代碼來源:dataloader.py

示例6: _run_op_test

# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunOperatorOnce [as 別名]
def _run_op_test(self, X, I, check_grad=False):
        with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)):
            op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y'])
            workspace.FeedBlob('X', X)
            workspace.FeedBlob('I', I)
        workspace.RunOperatorOnce(op)
        Y = workspace.FetchBlob('Y')

        if check_grad:
            gc = gradient_checker.GradientChecker(
                stepsize=0.1,
                threshold=0.001,
                device_option=core.DeviceOption(caffe2_pb2.CUDA, 0)
            )

            res, grad, grad_estimated = gc.CheckSimple(op, [X, I], 0, [0])
            self.assertTrue(res, 'Grad check failed')

        Y_ref = X[I]
        np.testing.assert_allclose(Y, Y_ref, rtol=1e-5, atol=1e-08) 
開發者ID:ronghanghu,項目名稱:seg_every_thing,代碼行數:22,代碼來源:test_batch_permutation_op.py


注:本文中的caffe2.python.workspace.RunOperatorOnce方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。